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Abstract

This work applies genetic Algorithm to determine the optimal location, number, and sizing of Flexible AC
Transmission Systems (FACTS) devices in power system to improve power system performance quality. The
challenge in this study is considering a mixture of various objective functions, which are economic
considerations as minimizing total generation cost and FACTS devices investment cost in addition to
minimizing the system losses, holding voltage profile within acceptable limits, and considering minimization
of reactive power flow on power system lines.

The optimization process is developed without missing MVA line flow limits cost and insuring that iteration
counter increases towards its final value at convergence. A good simulation results can be obtained by
minimizing all the objective functions and satisfying all the constraints. Shunt and series types of FACTS
devices (SVC and TCSC) had been introduced. All objective functions have been solved and simulated by
controlling the active power of the generators and reactive power of shunt and series compensator with respect
to GA parameters. An IEEE30 bus system is used to demonstrate the effectiveness of the proposed fitness
function based on (BGA) as an optimization tool and yields efficiency in improvement of power system
performances. The results indicate that the proposed optimization using several methods like Weighted Sum
method and Penalty Function method are available for finding the best solution. That approach with careful
adjustment of the weight and penalty coefficients is a powerful optimization, may yield better solutions to a

set of engineering problems than those obtained using a single objective function.

Keyword: Binary genetic Algorithm (BGA); optimal power flow (OPF); Flexible AC Transmission systems
(FACTS).
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1. Introduction

Due to the rapid extension in industries, power demand has increased substantially, while the
expansion of generation and transmission has been limited. Some of the transmission lines and
generators are working under overload conditions which effect on the overall power system
stability. Flexible AC transmission lines (FACTs) has been applied successfully for solving the
power systems stability problems, increase power transmissions, reactive power compensation,
voltage stability enhancement, and power factor corrections [ 1-24]. So that the optimal location
of FACTS devices, their optimal parameters, and their control systems are very important in
order to evaluate the goal of their insertion in power systems. An appropriate models of (FACTS)
shunt-series controllers for multi-objective optimization has been developed [25]. A multi-
objective optimization approach is applied to determine the optimal location of FACTS shunt-
series controllers. The optimal location and optimal parameters of the FACTS controllers have
to be selected correctly to provide voltage stability and improve power system security [26].
The singular analyses of the power system Jacobian matrix are applied to identify the optimal
location of shunt FACTS devices in large power systems. The Genetic algorithm (GA) has been
applied for determining the location of FACTS controllers, their type and rated values [27].
Various FACTS controllers, Static Var controller (SVC), Thyristor Controlled Series
Compensator (TCSC) and Unified power Flow Controller (UPFC) were considered. The used
GA approach is an effective method for finding the optimal choice and location of FACTS
controllers and also in minimizing the overall system cost. The Particle Swarm Optimization
(PSO) technique has been applied to find optimal location of (FACTS) devices to achieve
maximum system load-ability with minimum cost of installation of FACTS devices [28].
Different types of FACTS devices were considered which are, thyristor controlled series
compensator (TCSC), static VAR compensator (SVC), and Unified power flow controller
(UPFC). Transmission networks are operated near to their constraints under deregulated
environment, so that installing FACTS devices can be useful in secure system operation. In
order to maximize their investment surpluses, a new algorithm for optimal location of FACTS
devices has been introduced [29]. The goal of such algorithm is to maximize the capacities in
transmission network. A new method based on sensitivity analysis and extended equal area
criterion (EEAC) is implemented for optimal location and capability of FACTS devices in a
power system. The optimal location and capability of Static VAR Compensator (SVC) and
Static Synchronous Compensator (STATCOM) in power systems is investigated. The power

systems and transient stability improvement are the main goal [30]. The non-dominated sorting
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genetic algorithm (NSGA-I1) with the feature of adaptive crowding distance has been proposed
for solving multi-objective optimal power flow (MOOPF) problem. The technique is applied to
determine the optimal location and capacity of FACTS devices in power system. Two types
of FACTS devices (TCSC and SVC) were modeled and analyzed to enhance the steady state
performance of power system [31]. The residue factor is implemented for determining the
optimal location of FACTs devices to damp power systems oscillations [32]. The Sequential
Quadratic Programming (SQP) approach has been used for determining the optimal location
and optimal size of FACTs devices needed for power systems voltage stability enhancement.
The second stage the Simulated Annealing (SA) based optimization method is used to find the
optimal solution [33]. The sequence component has been applied for determining the optimal
location and control of FACTs devices in unbalanced power systems. A Three-phase power flow
modelization has been implemented [34]. A new multi-objective planning framework, namely
non-dominated sorting improved harmony search (NSIHS), has been implemented to evaluate
the impact of FACTS location for an improvement of voltage stability. This approach is based
on the modify HS algorithm which has been extended to the multi-objective optimization
problem by non-dominated sorting and ranking with crowding distance strategy[35].A Non-
traditional optimization technique, modified particle swarm optimization (MPSO) is
implemented to optimize the various process parameters involved of FACTS devices in a power
system. The FACTs devices location, parameters, and their rated value were considered [36].

The Genetic Algorithms (GA) optimization technique has been applied to determine the optimal
location of FACTS devices to improve voltage stability margin and minimize reactive power
loss of the power systems. The location of FACTS devices, type, cost, and parameter values are
optimized simultaneously [37]. A criticism of Evolutionary Algorithms might be the lack of
efficient and robust generic methods to handle constraints [38]. The GA is a search process
which can be applied to constrained problems; the constraints may be included into the fitness
function as added penalty terms as in case of (M VA line flow limits and Convergence). Penalty
terms are added to the fitness function. In this way the invalid solutions are considered as valid
but they are penalized according to the degree of violation of the constraints. This method is
probably the most commonly used method for handling problem constraints and is implemented
in many variations [39-42] However, it imposes the problem of building a suitable penalty
function for the specific problem, based on the violation of the problem’s constraints, that will
help the GA to avoid infeasible solutions and converge to a feasible (and hopefully the optimal)

one.
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The paper presents the application of (BGA) to seek the optimal location, number, and sizing
of Flexible AC Transmission Systems (FACTS) devices in power system to improve power
system performance. The challenge in this study is considering a mixture of various objective
functions, which are economic considerations as minimizing total generation cost and FACTS
devices investment cost in addition to minimizing the system losses, holding voltage profile
within acceptable limits, and considering minimization of reactive power flow on power system

lines.

2. Mathematical Model of FACTS Devices

TCSC is modelled simply to just modify the reactance of transmission line. 7CSC acts as the
capacitive or inductive compensator by modifying reactance of transmission line. This changes
line flow due to change in series reactance illustrated in Fig. 1(a). In this paper TCSC is
modelled by changing transmission line reactance as follows [43]:

XrL= X1L+ rresc XTL (1)

where Xt1= reactance of transmission line, rrcsc =compensation factor of TCSC.

TCSC reactance is chosen between -0.7XtL to 0.2XtL. SVC at Fig. 1(b), can be used for both
inductive and capacitive compensation, reactive power drawn by SVC, which is the same as
the injected power to bus k, is written as [44]:

AQk = stc = -Bsvc sz (2)
SVC chosen between -20 to 20 Mvar

3. Optimal Power Flow Formulation

The optimal power flow problem is to optimize the performance of a power system in terms of
one or more objective functions while satisfying several equality and inequality constraints.
Generally the problem can be formulated as a nonlinear and constrained optimization problem

[42]:

Minimize: f(x,u) 3)
Subject to: g(x,u) =0 ; “4)
hix,u) <0 (5)

where u: Vector of system state variables ; x: Vector of problem control variable
f(x, u): Objective function to be minimized

g(x, u) : Equality constraints represents non-linear load flow equations.

h(x, u): Inequality constraints i.e. system functional operating constraints.

Some constraints include entire power flow equations, the optimal power flow Subject to:
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Equivalent constraints:

Pgi — Ppi — Vi X712, Vi[Gyj cos(8; — ;) + Byjsin(8; — §;)] = 0 (7)
Qi — Qpi — Vi X}, Vi[G;j sin(8; — &;) — Byjcos(8; — 6;)] = 0 (®)
Inequality constraints: Upper and lower limits on the active and reactive generations is given
in Appendix A:
P < pg; < PO Vieng )

"< Qai < QG Vieng (10)

Where i=1,2...nb is the number of buses, P and Qg are the generator real and reactive power
respectively, Vg bus voltage, & voltage angle of bus, Pp and Qp are the real and reactive loads
respectively, G and B;j are the transfer conductance and susceptance between bus i and bus j

respectively.

4. Problem Formulation

Here, a problem with multi-objective functions is formulated to be minimize, total generation
cost, FACTS devices investment cost, the system real power losses and the voltage deviation.
To help the GA to avoid infeasible solutions and converge to a feasible, incorporating
constraints into the fitness function of a GA by using penalty factors w;. The presented
technique gives the GA a significantly better chance of locating the global optimum. That was
applied to reactive power flow on lines, line-flows deviation and insure iteration counter
increases towards its final value at convergence. That result in a complicated search hyper-

surface.

4.1 Fuel cost of generation units

The objective function considering minimization of generation cost as in [41, 45-46] can be
represented as given in equation (4)

fi = wi X2 aiPé; + biPg + ¢ ($/h) (6)
Where ng is the number of generators, Pg is the active power outputs of the generators and a, b

and c are the generating cost coefficients in ($ /hr) as given in Appendix A.

4.2 FACTS devices investment

Polynomial cost function of FACTS devices is presented in Siemens AG Database and used for

FACTS allocation study as used in [47]. The cost function of TCSC is expressed as:Cycsc =
0.0015 S? — 0.7130 S + 153.75 (12)
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Where Crcsc: cost of TCSC in $/KVar and S is the operating range of TCSC in MVAr.

SVC Cost Function: In $/KVar basis the cost function is expressed as [29]:

Csyc = 0.0003 S%? -0.3051 S + 127.38 (11)
where, S is the operating range of the SVC device in M Var.

The total FACTS devices cost is expressed as

f2 = wo (X Crese + 2 Csve) (12)

o ($/h) (13)

w,X8760xXlife time

The cost of FACTS installation=Sf,

Inequality constraints. Upper and lower bounds in the FACTS parameters (Table. 2):

XM < Xpacrs < XM (14)

4.3 Transmission lines loss
Considering minimization of real power loss as in [45,48-49] can be represented as:
fs = Puoss = By Gy (Vi + V]’ — 2V,Vjcos(8; — &) (15)

Where nl is the total number of transmission lines.

4.4 Reactive power flow
The objective function considering minimization of reactive power flow on power system lines.

This objective reduces the FACTS size and numbers, represented as:

4.5 Voltage Level (VL)

Inequality constraints of the system voltage

ymin <y, < ymex (17)
Where V™" = 0,95 and V™ = 1.1

For voltage levels between 0.95 to 1.1 p.u, the value of objective function is equal to 0. And
take penalty outside this range, so the value increase to wg [40].

_{ 0 if 095<V,<11
fs = W otherwise

(18)
4.6 Line-flow deviation
Considering minimization of apparent power flow on power system lines to insure not

exceeding the limit of MVA of lines. This can be represented as:
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fo=ws (Vi(Vi = V) Yyus iy = 5e) (19)

baseMV A

Where LF is the limit lines MVA as given in Appendix B.

4.7 Optimal power flow convergence

Solving the power flow problem by iterative step to insure iteration counter increases towards
its final value at convergence by penalty function method.

fr = W7(Z?=gl Pgi — 2?21 Ppj — Zﬂl:_m PLoss(k)) (20)

To obtain the total fitness function, the weighted sum method of all components of cost function
are linearly evaluated

Total fitness function =Y7_,w; X f; (21)

Where the weighting factors w;, inserted in the each cost term.

5. Proposed Method

The Genetic Algorithm (GA) was developed by the evolutionary theory of Darwin. A series of
initial solutions that meet all conditions are created randomly and then the control parameters
are encoded to solve the seven OPF problems. Fitness function is developed to generate more
resistant generations using operators of crossovers and mutations in each iteration step as shown
in Fig.2.

The proposed method aims to give optimal number, location and values of both shunt and series
type of FACTS and also gives optimal values of six-generator power. The method used digital
GA (Table 1) with 5 strings and 34 variables to achieve the total cost function. The used
chromosome structure has the first string with 6 parameters which is used to set power for the
five generators units, within operation constrain limits and limiting the slack bus power. The
next four strings dealing with FACTS locations and values (Table.2). Parameters of the GA at
strings 2-4 take place to obtain the location of FACTS devices. Seven is the maximum number
of SVC and TCSC devices. Ranking the chromosomes according to the total fitness function.
Due to the influences of the costs of minimizing the reactive power flow on lines and FACTS
devices investment. The chromosome with small numbers of FACTS devices will have a high

rank. That will successfully limit the total number of FACTS devices inserted in the system.

6. Simulation Results

The load flow is performed for the given IEEE 6-M/30-bus system. The bus data and line data
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are taken from [50]. The studies system schematic diagram is as shown in Fig. 3. The choice of
appropriate penalty terms for each terms of the fitness from f; to f; aretakenas 1, 0.1, 1, 10,
100, 100, 1000 respectively. The chromosome with lowest cost (best solution) avoid all
penalties and a sufficient minimum cost for all terms of the total cost that clearer in Table 3,
incorporated into the power system, carrying out OPF process to give the best total cost
862.6492. The base case given by American Electric Power does not contain any compensators.
The enhancement in the total performances of the power system as illustrated in table 4.
Convergence curve of the total minimum cost function shown in fig.4. The reduction in the
number of FACTS units over GA generation are illustrated in Fig.5. Comparative results at base
case and after optimization for: system powers, active (P) and reactive (Q) flow on lines are
shown in Fig.6. Comparative results at base case and after optimization for active power loss
and lines flow in MVA are shown in Table 5. Enhancement in generators reactive power(Q) and
power factor (P.F.) in Fig.7. In addition, the improvement in the power system buses voltage

profile performance is clarified in Fig.8.

7. Conclusion

The choice of appropriate penalty terms for constrained optimization is a serious problem. Some
constrains of power system as reactive power flow on lines, line-flows deviation and OPF
convergence are incorporating into fitness function using penalized degree of violation. This
proposed technique is success to guide the search towards the optimum and enhancement of
many performances of power system. Result in a smoother hyper-surface. Ranking method
successfully reduced the suggested FACTS numbers. Also using a large number of GA variables
helped in a good system quality. Brief comparatively study results on standard test system
confirmed the effect of optimized FACTS device to improve power system performances on
lines and buses, in addition to reduce the annual monetary operating cost. Studied system
overall objective functions, have been considered in the study to indicate the powerful of the
proposed approach. The proposed BGA optimization technique have been evaluated through
the IEEE 30-bus power system.

APPENDIX
A. Generating limits and cost coefficients for IEEE-30-bus system [41,50-52]
busNo. | V@ | PG#* | pIin | Q9% | QUun | a($/MW?) | b$IMW) | c ($)
1 1.06 | 200 50 - - 0.00375 2 0
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2 1.043 | 80 20 100 | -20 | 0.0175 1.75 0
1.01 50 15 80 -15 | 0.0625 1 0
1.01 35 10 60 -15 | 0.00834 | 3.25 0
11 1.082 | 30 10 50 -10 0.025 3 0
13 1.071 | 40 12 60 -15 0.025 3 0

B. MVA-Limits for 41 line of IEEE-30 bus system [50,52]

Line No. 1 2 3 4 5 6 | 7|8 9 |10 |11 ]12]|13 |14
MVA limit | 130 | 130 | 65 | 130 | 130 | 65 | 90 | 70 | 130 | 32 | 65 | 32 | 65 | 65
Line No. 15 16 [ 17| 18 | 19 [ 20|21 [ 22| 23 |24 | 25|26 |27 |28
MVAlimit | 65 | 65 | 32| 32 | 32 |16 |16 |16| 16 |32 |32 (32|32 |32
LineNo. | 29 | 30 |31 | 32 | 33 |34 (35|36| 37 |38 |39 |40|4l
MVAlimit | 32 | 16 | 16| 16 | 16 |16 |16 | 65| 16 |16 | 16 | 32 | 32
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Fig.8 Voltage and Angles of the buses after and before using optimized FACTS

Table.1 GA parameters setting

Population size 80 chromosome

No. of GA parameters 34 variable

Parameter size 16 bits
Mutation rate 0.01
Selection 0.5

Max. GA generations 200 iterations

fitness limit Zero

Table 2. Chromosome structure

String Gene ) GA parameters constrains
Function — )
number  Number Minimum  Maximum
1 1-6  Generators-power ppin e
2 7-13  SVC-bus location 1 30
3 14 -20 SVC-Values -20(Mvar) 20(Mvar)
4 21 - 27 TCSC-line location 1 41
5 28 - 34 TCSC-Values -0.7X1L 0.2X1L
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Table 3. Chromosome structure for best solution
Generators (MW) 165.4 47.138 21527 34.857 11.15 12.13

SVC-bus location 19t 7t 22t
SVC Value (Mvar) 19.158 19.837  4.9339
TCSC-line location 25t 27t

TCSC Value (P.U) | 0.069192 -0.63664

Table 4. Comparative analysis

IEEE30 (base-case)

Optimized IEEE30

Total Generators power (MW) 296.759 292.16
Total Generators Reactive power (Mvar) 148.306 87.14
Total Power Loss (MW) 13.359 8.7576
Total Reactive Power Loss (MW) 22.106 4.8689
Fuel Cost ($/h) 833.35 797.55
FACTS cost ($/h) : project life time 5 years - 15.45
Converge (Iterations) 7 5
Table 5. power loss and lines MVA comparative anlysis
Line Power-Loss Flow in MVA Line | Power-Loss Flow in MVA
Base @ OPF  Base OPF Base @ OPF Base OPF
1-2 4340 2.102 159.35 111.02 16-17 | 0.035 0.019 6.70 498
1-3 2.038 1.223 70.87 54.83 15-18 [ 0.059 0.066 7.60 8.22
2-4 4341 0.545 35.36 31.96 18-19 [ 0.011 0.028 4.26 6.95
3-4 0.555 0327 66.04 51.04 19-20 [ 0.012 0.04 6.07 11.45
2-5 2.112  1.650 69.13 61.49 10-20 | 0.065 0.127 8.48 12.15
2-6 1.291 0913 48.69 41.18 10-17 | 0.006 0.01 4.38 5.79
4-6 0.400 0.198 58.60 41.55 10-21 | 0.115 0.147 1855 21.47
5-7 0.146 0.077 17.22 12.96 10-22 10.054 0.021 8.80 5.57
6-7 0.333  0.371 35.68 38.07 21-22 1 0.001 0.002 2.470 4.79
6-8 0.069 0.015 24.34 11.04 15-23 [ 0.060 0.050 7.94 7.39
6-9 0.000 0.000 19.16 20.55 22-24 [0.044 0.071 6.27 8.13
6-10 0.000 0.000 13.33 13.39 23-24 10.025 0.021 4.43 4.15
9-11 0.000 0.000 24.05 19.07 24-25 [0.001 0.003 0.65 AR
9-10 0.000 0.000 33.74 31.73 25-26 [0.046 0.045 4.27 4.26
4-12 0.000 0.000 37.23 35.56 25-27 [0.026 0.016 4910 3.88
12-13 [ 0.000 0.000 19.65 13.62 28-27 [0.000 0.000 1891 17.94
12-14 [ 0.090 0.069 8.960 7.940 27-29 [0.089 0.086 6.42 6.41
12-15 10.285 0.202 21.78 18.56 27-30 [0.170 0.162 7.29 7.29
12-16 [0.099 0.068 10.75 9.030 29-30 [0.035 0.034 3.75 3.75
14-15 [0.013 0.005 2.520 1.530 8-28 10.008 0.010 336 4.13
6-28 [0.048 0.033 16.86 14.0
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