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Abstract 

Image quality assessment (IQA) is crucial for the creation and assessment of visual intelligence 

systems to ensure end users receive high-quality visual content. Traditional IQA methods are 

frequently based on knowledge-driven, simplistic models. IQA has advanced significantly with the 

advent of deep learning, specifically convolutional neural networks (CNNs), which effectively 

model perceptual image distortions. This paper presents an extensive study on various CNN 

architectures as feature extractors in DISTS (Deep Image Structure and Texture Similarity) 

framework for IQA. Through the optimization of learnable parameters for various CNNs using 

various search algorithms and methods, we achieve substantial improvements in image quality 

assessment task. Our results show that optimized CNN-based metrics, particularly those built using 

VGG19 and SqueezeNet architectures, not only perform better but also outperform the CNN 

architectures used in the original DISTS model. These models closely match human perceptual 

judgments in their ability to capture and represent complex image features. This study opens the 

door for more accurate and user-aligned visual quality assessments by highlighting the potential of 

advanced deep learning techniques, especially when choosing the best CNN architecture and tuning 

method for particular task or application to improve the accuracy and reliability of IQA methods. 
 

Keywords: Image Quality Assessment (IQA), DISTS Framework, Convolutional Neural 

Networks (CNNs), Hyperparameter Optimization. 

 

1. Introduction 

Nowadays, with the prevalence of visual intelligence products, images have become a crucial 

component of various applications in daily life. In our daily lives, image-based applications are 

everywhere. Image segmentation techniques can be utilized in medical imaging, object 

identification techniques can be employed in transportation hub monitoring, and image 

dehazing/deraining techniques can be significant in smart car autopilot [1]. 

Several kinds of distortions are incorporated into visual communication systems at nearly every 

stage, including acquisition, compression, transmission, and display. In this case, image quality 

assessment is required to guarantee and enhance the quality of the visual contents provided to end 

users [2]. Image quality assessment (IQA) can be applied to various areas like image acquisition 

[3], segmentation [4], image fusion [5], and medical imaging [6][7]. IQA methods fall into two 

categories - subjective and objective. While subjective evaluation, which involves human observers, 
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is considered the most accurate way to judge image quality since people are ultimately the end 

users of most multimedia, it has some major drawbacks. Subjective tests are expensive and time-

consuming, making them impractical for real-world use. They can also be affected by various 

external factors such as viewing distance, display type, lighting, an individual's vision and mood 

on a given day [8]. 

Therefore, there is a need to develop mathematical models that can predict the quality perception 

of the average human observer. These objective models would be able to replace subjective tests, 

which are not feasible options due to their cost and variability across test administrations and 

participants. The goal is to automate the assessment of image quality in a way that correlates well 

with human opinion [1][8]. 

For over 50 years, the area of full-reference IQA has been led by minimalistic, knowledge-based 

models containing few adjustable settings [9]. These knowledge-driven full-reference image 

quality assessment approaches have taken several computational models of the HVS from 

psychological vision science and made assumptions about the HVS's function in order to anticipate 

perceptual quality. However, it is challenging to guarantee the best performance by applying the 

HVS models to the real-world IQA problem because most of them are complex and were created 

in a limited and refined condition [10]. Some well-known instances involve techniques like mean 

squared error (MSE), structural similarity (SSIM) index [11], visual information fidelity (VIF) 

measure [12], most apparent distortion (MAD) calculation [13], and normalized Laplacian pyramid 

distance (NLPD) [14].  

In recent years, the advent of deep learning has revolutionized IQA. Deep convolutional neural 

networks (CNNs) excel in extracting rich semantic information from high-dimensional data, 

making them highly effective for modeling perceptual image distortions [15][16][17]. Notably, pre-

trained deep features from networks like VGG have proven valuable for perceptual quality 

measurement [16]. 

This paper presents a comparative analysis of various CNN architectures as feature extractors 

within the DISTS (Deep Image Structure and Texture Similarity) framework [18] for IQA. We 

employ different search algorithms to tune the learnable parameters, alpha and beta, for each CNN, 

comparing their performance to identify the best results. The optimized CNN-based metrics are 

evaluated on several state-of-the-art IQA databases, demonstrating the superior CNN architecture 

that outperforms even the original VGG16-based DISTS method in the image quality assessment 

task. 

 

2. Related Work 

Different types of IQA methods have been developed to evaluate the perceived quality of images. 

There are three classifications of objective image quality assessment: full-reference, reduced-

reference, and no-reference image quality evaluation. 

Full reference IQAs (FR-IQAs), which fall within the scope of this paper, evaluate the perceptual 

quality of a distorted image with respect to its reference image. These methods typically analyze 

pixel-level or feature-level differences between the reference and distorted images [17]. NR 

methods aim to assess image quality without requiring a reference image directly. Instead, they rely 

on intrinsic properties of the distorted image to estimate its quality. NR methods often leverage 

statistical analysis, machine learning algorithms, or image content analysis techniques to make 

quality predictions. Reduced-reference (RR) IQA methods operate with partial information from 

the reference image. These methods extract and compare specific features or characteristics from 

the reference and distorted images. 

A straightforward and commonly used full-reference image quality metric is the mean square error 
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(MSE), which calculates the difference between a reference and distorted image. The Mean 

Squared Error (MSE) is calculated by taking the average of the squared differences between the 

original, undistorted image X and the tested "distorted" image Y. However, it has been observed 

that MSE does not align well with the perceived visual quality [19]. As a result, a diverse range of 

image quality metrics has been developed with the aim of better capturing the subjective 

assessment of image quality by humans. This multitude of metrics seeks to achieve a stronger 

correlation with the perceived visual quality and enhance the accuracy of image quality assessment 

[20]. 

Several full-reference IQA methods have been proposed to improve upon the limitations of the 

mean square error (MSE) metric, with the Structural Similarity (SSIM) index [11] emerging as a 

widely adopted standard in the field of image processing. The SSIM index takes into account the 

human visual system's sensitivity to structural information by considering three components: 

luminance similarity (comparing local mean luminance), contrast similarity (comparing local 

variances), and structural similarity (measured as local covariance). It has been recognized as a 

valuable metric that captures important perceptual aspects of image quality. 

To combine image details at various resolutions and viewing conditions for IQA, multi-scale 

structural similarity index (MS-SSIM) [21] and information content weighted structural similarity 

index (IW-SSIM) [22] are proposed upon the foundation laid by the SSIM approach. By examining 

different angles of HVS the performance and speed of the FR-IQA algorithm are enhanced. 

However, these methods have several disadvantages. They can be computationally complex, have 

limitations in accurately assessing quality with specific types of distortions, lack adaptability to 

different content or viewing conditions, as they are often designed based on specific assumptions 

or models of visual perception, and may have a limited scope by focusing on specific aspects of 

image quality and potentially neglecting factors like color accuracy, texture preservation, or 

semantic relevance, which are important for comprehensive quality assessment. 

Deep learning has revolutionized numerous fields of computer vision such as image segmentation 

[23][24], image classification [25], and object detection [26]. Following the success of CNNs in 

image classification tasks, deep learning has become prevalent across image processing domains. 

Liang et al. [27] introduced dual-path CNNs taking distorted and reference patches as input to 

predict quality scores. Kim and Lee [10] adopted a similar architecture comparing distorted patches 

to error maps. Recently, features from pre-trained CNNs have proven powerful for various vision 

tasks without need for retraining. Representations from networks like AlexNet [28] and GoogLeNet 

[29] pre-trained on ImageNet [30] achieved state-of-the-art results in classification, retrieval and 

other applications [31]. Motivated by this success, many FR-IQA methods now rely on deep 

features. Amirshahi et al. [32] measured similarity between AlexNet [28] activation maps on 

reference and distorted inputs. Bosse et al. [17] extracted features from VGG16 [33] patches, fusing 

distorted and reference vectors to predict quality. Richard Zhang et al. proposed the LPIPS method 

[16], which leverages the powerful representation capability of deep features to capture human 

perception. This method calculates a weighted mean squared error by comparing normalized 

activation maps of two images. LPIPS assesses image quality by directly comparing deep features 

extracted from a pre-trained VGG network at each local point. However, a limitation of these 

methods is that it does not adequately capture "visual texture," which encompasses repeated 

patterns that may vary in location, size, color, and orientation [34]. 

K. Ding et al. proposed DISTS [18], a method that leverages a modified version of the VGG16 

network to comprehensively assess global structure and texture similarities, resembling the SSIM 

metric. It has been demonstrated through empirical evidence to be highly responsive to structural 

distortions and resilient against texture substitutions. However, it is worth noting that one potential 
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disadvantage of DISTS is that it may exhibit comparatively lower values of Spearman Rank 

Correlation Coefficient (SRCC) and Kendall's Rank Correlation Coefficient (KRCC) when 

evaluated on certain datasets, as compared to other IQA methods. While DISTS excels in capturing 

structural distortions and texture robustness, further research and exploration may be beneficial to 

enhance its performance in terms of correlation with human subjective ratings across a wider range 

of datasets. 

Following this, K. Ding et al. also proposed a locally adaptive structure and texture similarity index 

for full-reference IQA (A-DISTS) [9]. However, A-DISTS may still demonstrate relatively lower 

values of SRCC and KRCC when assessed on specific datasets in comparison to other IQA methods. 

Additionally, the performance on global texture-related tasks may be slightly compromised. 

 

3. Methodology 

3.1. Unifying Structure and Texture Similarity (DISTS) 

In 2020, K. Ding et al. proposed DISTS IQA method [18], which is the first full-reference IQA 

method insensitive to the resampling of visual textures. DISTS consists of two main components: 

a feature extraction backbone and the computation of image structure and texture similarity to 

determine the quality score. The feature extraction backbone, trained using VGG16, extracts 

feature maps at different layers such as conv1_2, conv2_2, conv3_3, conv4_3, and conv5_3. These 

feature maps capture various levels of information, including structure and texture details. The 

second component involves a weighted sum calculation. 

DISTS is trained on the KADID-10k [35] dataset and exhibits improved performance in terms of 

PLCC and KRCC compared to conventional image quality datasets, acting as a baseline for SSIM 

[11]. 

DISTS demonstrates its ability to utilize a pre-trained and fixed VGG16 backbone to extract 

features from both the reference image and the distorted image, serving as input for IQA. The 

equation provided below presents the quality score for distorted images by combining the weighted 

summation of structural similarity and texture structure at various levels. 

𝐷𝐼𝑆𝑇𝑆(𝑥, 𝑦) = 1 − ∑ ∑(𝛼𝑖𝑗𝑙(𝑥̌𝑗
(𝑖)

, 𝑦̌𝑗
(𝑖)

) + 𝛽𝑖𝑗𝑠(𝑥̌𝑗
(𝑖)

, 𝑦̌𝑗
(𝑖)

))

𝑛𝑖

𝑗=1

𝑚

𝑖=0

 (1) 

 

where {𝛼𝑖𝑗 , 𝛽𝑖𝑗} are positive learned values that are constrained such that,        

∑ ∑(𝛼𝑖𝑗 + 𝛽𝑖𝑗)

𝑛𝑖

𝑗=1

= 1

𝑛

𝑖=0

 (2) 

 

These weights are tuned during training to align with human perception of picture quality. 

The complete computational diagram of the original DISTS is illustrated in Figure 1. Six stages 

are included (raw pixels as the zeroth stage), and there are 3, 64, 128, 256, 512, and 512 feature 

maps in total at each level. At every step, measurements of the global texture and structural 

similarity are taken and mixed with a weighted summation. 
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Figure 1. Perceptual representation for the original DISTS model. 

3.2. Tune Search Algorithms 

To optimize the performance of the models, we added a parameter tuning process. We used Ray 

Tune [[36], a potent framework for hyperparameter optimization that provides an extensive 

framework for hyperparameter tuning, to adjust the alpha and beta values in equation 1. Within the 

Ray Tune framework, we investigated various search algorithms, such as Random Search, Blend 

Search, Ax Search, Nevergrad Search, Bayesian Optimization (BO) Search, and Bayesian 

Opt/HyperBand (BOHB) search. We were able to locate the ideal values for alpha and beta by 

methodically and effectively searching the hyperparameter space with the help of these search 

algorithms. 

3.2.1. Random Search 

Random search [37] is a simple optimization algorithm that conducts a random exploration of the 

search space of a problem by sampling points and evaluating the objective function values. As such, 

it represents the 'default' and most basic way to do hyperparameter search, independent of gradients 

and any prior knowledge of the problem. The algorithm randomly generates a set of candidate 

solutions and then evaluates them in order to determine the performance. It repeats the process a 

number of times equal to a predefined number of iterations, or until a specified termination 

condition is reached. In this way, random search tries to achieve the optimum solution by luck. 

3.2.2. Blend Search 

Blend Search is a hyperparameter optimization algorithm developed by the flaml module [38] of 

the Ray Tune library. The essence of Blend Search is to combine several kinds of searches including 

Grid Search, Random Search, and even Adaptive Search. In this way, Blend Search tries to provide 
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a balance between exploration and exploitation so that fast convergence for the optimization results 

can be achieved. 

3.2.3. Ax Search 

Ax is a library for tuning hyperparameters: it performs Bayesian optimization. That enables the 

automation of the tuning of hyperparameters to get the best possible values and attain optimization 

for some objective function, such as model accuracy. In Ax, tunable hyperparameters are defined, 

and at the same time, their search space ranges are specified. It then proceeds to use Bayesian 

optimization in suggesting intelligent configurations to test, balancing exploration and exploitation. 

Ax intelligently explores the hyperparameter space by making suggestions from the result in 

previous iterations, techniques which are currently being developed using Gaussian processes and 

Bayesian statistics. 

3.2.4. Bayesian Optimization (BO) search 

The Bayesian Optimization (BO) search is a method used for hyperparameter tuning. It uses a 

probabilistic model of the objective function to guide the search towards promising regions of the 

hyperparameter space. By iteratively evaluating different hyperparameter configurations and 

updating the model based on the observed performance, BO gradually learns which configurations 

are likely to yield better results. It balances exploration and exploitation using an acquisition 

function, which determines the next configuration to evaluate. 

3.2.5. Bayesian Opt/HyperBand (BOHB) search 

The Ray Tune Bayesian Opt/HyperBand search algorithm [39] is actually a powerful search 

algorithm that combines the power of Bayesian Optimization with that of HyperBand. This links 

the two stages—exploration and then exploitation. During the exploration stage, it utilizes the 

HyperBand algorithm to evaluate the configurations of poor-performing sets of hyperparameters, 

discarding them while devoting more resources to the most promising ones. It then uses Bayesian 

Optimization in the exploitation phase, building a probabilistic model of the objective function that 

guides the search towards more promising areas. 

3.2.6. Nevergrad Search 

Nevergrad [40] is an optimization library from Facebook AI Research, offering various 

optimization algorithms. For hyperparameter tuning with Ray Tune, Nevergrad Search provides a 

search algorithm choice that allows you to leverage a wide variety of optimization algorithms 

offered by Nevergrad including but not limited to Differential Evolution and Particle Swarm 

Optimization to find the best set of hyperparameters for your machine learning model. 
 

3.3 Machine Characteristics 

A computer with an Intel(R) core(TM) i7-9700K processor (3.60 GHz) and 32 GB of RAM was 

used for this experiment. Using PyTorch version 2.2.0, we ran all computations on an NVIDIA 

GeForce GTX 1650 GPU, offloading all calculations to the CUDA-enabled GPU to improve 

performance and shorten runtime. CUDA version 12.1 was installed on our Windows 10 64-bit 

system in order to facilitate GPU acceleration. 

 

4. Evaluation 

4.1. IQA Datasets 

Over the past 15 years, numerous IQA (Image Quality Assessment) databases have been developed, 

but there is currently no universally accepted standard dataset. These IQA datasets employ diverse 

subjective testing methodologies, varying numbers of images, and different types of distortions. 

To facilitate our research and enable result comparisons, we chose the KADID-10k [35] database, 

which is highly regarded within the research community. Additionally, we selected TID2013 [41], 

LIVE [42], and CSIQ [13] datasets, as they were also chosen in the original DISTS paper. 
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4.2. Evaluation Criteria 

To assess the objective performance of IQA (Image Quality Assessment), the correlation between 

Mean Opinion Scores (MOS) and the objective IQA quality score is widely used. This correlation 

is typically measured using three metrics: PLCC, SRCC, and KRCC. 

SRCC and KRCC evaluate the monotonicity of the predicted quality score, while PLCC measures 

the linearity of the predicted quality score. Higher values for these correlation metrics indicate 

better IQA prediction performance. 

The Pearson linear correlation coefficient (PLCC) specifically requires the produced scores to 

exhibit linearity in relation to subjective ratings. Considering the non-linear relationship between 

IQM scores and human assessors' scores [43][44], we have decided not to utilize the Pearson linear 

correlation coefficient (PLCC) for our evaluation. 

 

4.3. Results 

In our study, we conducted separate experiments using different Convolutional Neural Networks 

(CNNs) as the feature extraction backbone. Specifically, we utilized popular models such as 

VGG19 [33], ResNet50 [45], Resnet101 [45], AlexNet [28], SqueezeNet [46], and Xception [47]. 

These CNN architectures are known for their ability to capture intricate visual patterns and 

hierarchies of features from input images. 

Specifically, we divide the convolutional sections of each network into five parts to obtain feature 

maps. In addition, we use the input image itself as another feature map, resulting in a total of six 

feature maps per image. The inclusion of the input image as a feature map was motivated by the 

desired property of the transformation, which should be injective [18]. To compare the feature maps 

of the reference and distorted image, we globally applied two similarity functions: the texture 

similarity function 𝑙(·) and the structure similarity function 𝑠(·). By leveraging 𝑙(·) and 𝑠(·), we 

were able to assess the perceptual quality of the images based on their texture and structural 

characteristics. Finally, we aggregated the results from the similarity functions to calculate a final 

score. l and s represent texture similarity and structure similarity respectively and are equal: 

𝑙 =  
2𝜇𝑥̃𝑗

(𝑖)
𝜇𝑦̃𝑗

(𝑖)
+ 𝑐1

(𝜇𝑥̃𝑗
(𝑖)

)
2

+ (𝜇𝑦̃𝑗
(𝑖)

)
2

+ 𝑐1

 (3) 

𝑠 =  
2𝜎𝑥̃𝑗

(𝑖)
𝜎𝑦̃𝑗

(𝑖)
+ 𝑐2

(𝜎𝑥̃𝑗
(𝑖)

)
2

+ (𝜎𝑦̃𝑗
(𝑖)

)
2

+ 𝑐2

 (4) 

 

Where µ𝑥 and 𝜎𝑥 are the mean and standard deviation of the image x respectively and 𝜎𝑥𝑦 is the 

covariance of the x and y images. 

We have done extensive hyperparameter optimization using various datasets such as TID2013, 

KADID10K, LIVE, and CSIQ. Several search algorithms have been run to widely explore the 

hyperparameter space and retain the best configurations for every dataset-CNN combination. 

Various algorithms tested were: Random Search, Blend Search, Bayesian Optimization, 

HyperBand (BOHB), Nevergrad Search, and Ax Search. Ray tune was used to test about 50 

hyperparameter samples for each optimization run. We tried to find the optimal values of alpha and 

beta weight factors and best settings for individual CNN architectures on various image quality 
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datasets by comprehensively evaluating a large number of parameter settings.  

Tables 1-6 report the Spearman Rank Correlation Cofficient (SRCC) and Kendall Rank Correlation 

Cofficient (KRCC) values achieved using optimized hyperparameters obtained with an extensive 

search using various algorithms. In Table 1, we list the best achieved SRCC and KRCC for each 

combination of CNN with dataset for the Random Search. Similarly, for Ax Search in Table 2 and 

in Table 3 for Blend Search and in Table 4 for BayesOptSearch. In Table 5, the results are reported 

that are obtained also by using Bayesian Optimization together with HyperBand, and this is known 

as TuneBOHB. Finally, Table 6 shows the results for Nevergrad Search in each case. 

Table 1: SRCC and KRCC using Random Search 

CNN Model 
LIVE [42] CSIQ [13] TID2013 [41] KADID10K [35] 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

VGG19 [33] 0.954 0.813 0.947 0.801 0.856 0.666 0.899 0.723 

SqueezeNet [46] 0.947 0.804 0.917 0.742 0.866 0.680 0.889 0.708 

AlexNet [28] 0.944 0.796 0.898 0.713 0.834 0.647 0.874 0.686 

Xception [47] 0.662 0.488 0.463 0.316 0.426 0.294 0.259 0.171 

ResNet101 [45] 0.913 0.753 0.860 0.648 0.742 0.549 0.772 0.572 

 

Table 2: SRCC and KRCC using Ax Search 

CNN Model 
LIVE [42] CSIQ [13] TID2013 [41] KADID10K [35] 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

VGG19 [33] 0.955 0.814 0.946 0.800 0.856 0.666 0.898 0.723 

SqueezeNet [46] 0.947 0.804 0.917 0.742 0.868 0.690 0.885 0.698 

AlexNet [28] 0.946 0.797 0.898 0.713 0.836 0.648 0.876 0.687 

ResNet50 [45] 0.883 0.719 0.793 0.612 0.759 0.565 0.779 0.580 

Xception [47] 0.671 0.496 0.532 0.372 0.48 0.337 0.239 0.158 

ResNet101 [45] 0.929 0.766 0.869 0.660 0.745 0.551 0.773 0.572 
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Table 3: SRCC and KRCC using Blend Search 

CNN Model 
LIVE [42] CSIQ [13] TID2013 [41] KADID10K [35] 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

VGG19 [33] 0.955 0.815 0.947 0.801 0.856 0.666 0.899 0.723 

SqueezeNet [46] 0.949 0.808 0.919 0.745 0.866 0.681 0.898 0.718 

AlexNet [28] 0.944 0.795 0.899 0.714 0.835 0.647 0.876 0.687 

Xception [47] 0.853 0.664 0.677 0.493 0.428 0.296 0.392 0.293 

ResNet101 [45] 0.915 0.758 0.862 0.649 0.771 0.575 0.776 0.579 

 

Table 4: SRCC and KRCC using BayesOptSearch 

CNN Model 
LIVE [42] CSIQ [13] TID2013 [41] KADID10K [35] 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

VGG19 [33] 0.954 0.813 0.947 0.802 0.857 0.667 0.898 0.723 

SqueezeNet [46] 0.951 0.806 0.929 0.763 0.883 0.699 0.907 0.732 

AlexNet [28] 0.945 0.795 0.909 0.727 0.843 0.652 0.880 0.692 

ResNet50 [45] 0.933 0.776 0.881 0.706 0.784 0.587 0.794 0.598 

Xception [47] 0.698 0.521 0.527 0.368 0.566 0.407 0.273 0.182 

ResNet101 [45] 0.935 0.779 0.873 0.669 0.747 0.553 0.771 0.571 

 

Table 5: SRCC and KRCC using Bayesian Optimization and HyperBand 

CNN Model 
LIVE [42] CSIQ [13] TID2013 [41] KADID10K [35] 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

VGG19 [33] 0.955 0.814 0.946 0.801 0.856 0.666 0.898 0.723 

SqueezeNet [46] 0.955 0.816 0.922 0.751 0.870 0.685 0.89 0.706 

AlexNet [28] 0.948 0.800 0.902 0.719 0.839 0.649 0.875 0.685 

ResNet50 [45] 0.915 0.758 0.803 0.619 0.760 0.567 0.779 0.58 

Xception [47] 0.651 0.478 0.476 0.327 0.464 0.321 0.273 0.182 

ResNet101 [45] 0.915 0.758 0.862 0.650 0.744 0.551 0.769 0.570 

 

Table 6: SRCC and KRCC using Nevergrad Search 

CNN Model 
LIVE [42] CSIQ [13] TID2013 [41] KADID10K [35] 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

VGG19 [33] 0.956 0.819 0.948 0.802 0.857 0.667 0.900 0.725 

SqueezeNet [46] 0.950 0.805 0.917 0.742 0.868 0.690 0.886 0.699 

AlexNet [28] 0.946 0.796 0.898 0.713 0.837 0.645 0.875 0.686 

ResNet50 [45] 0.880 0.717 0.871 0.692 0.760 0.567 0.78 0.581 

Xception [47] 0.656 0.482 0.493 0.34 0.44 0.304 0.273 0.182 

ResNet101 [45] 0.920 0.761 0.860 0.649 0.746 0.552 0.771 0.571 

Table 1 to 6 outlines that, among various search algorithms applied, the best results in 

hyperparameters optimization search for the VGG19 model has been outlined by the 

NevergradSearch algorithm. This table shows NevergradSearch is particularly good for very 
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complex architectures like VGG19. On the other hand, the BayesOptSearch algorithm proved to 

be the most suitable for adjusting the alpha and beta parameters in most models across different 

datasets, indicating its versatility and robustness in hyperparameter optimization.  

As shown in Figure 2, the SqueezeNet-based model, despite being the most lightweight, 

demonstrates outstanding performance regarding the TID2013 and KADID-10k-related datasets, 

surpassing the other models. Moreover, on other datasets such as LIVE and CSIQ, it shows strong 

competitiveness with the VGG19-based model. SqueezeNet performs exceptionally well with 

larger datasets, as evidenced by the fact that the SqueezeNet-based model's performance values 

(SRCC and KRCC) are the best with the KADID-10K and TID2013 datasets. The VGG19-based 

model performs the best when evaluated with CSIQ and LIVE testing datasets and yields good 

competitiveness on the others. This is anticipated as its deeper architecture and higher complexity 

enable it to represent richer, more complex features of an image. 

 

 
Figure 2. Comparative Analysis of CNN Models: Chart illustrating the SRCC and KRCC values 

across diverse datasets, highlighting the performance variations in a crucial metric. 
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Figure 3. Sample images from TID2013, LIVE, and CSIQ with diverse distortion types, 

accompanied by MOS | DMOS scores, and quality assessments from each model. 

 

Tables 7, and 8 provide the SRCC and KRCC for different distortions seen in CSIQ and  LIVE 

datasets. It is clear that VGG19 and SqueezeNet outperform the rest of the CNN models in various 

types of distortions. 
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Table 7: SRCC and KRCC values for different distortions seen in the LIVE dataset. In each 

column the highest correlation is shown by red, the second highest by a blue. 

MODEL 
Wn Jp2k Jpeg Gblur Fastfading 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

VGG19 [32] 0.978 0.867 0.964 0.832 0.977 0.867 0.973 0.863 0.940 0.796 

SqueezeNet [46] 0.985 0.893 0.981 0.879 0.979 0.869 0.962 0.835 0.920 0.774 

AlexNet [27] 0.980 0.874 0.955 0.814 0.973 0.854 0.969 0.843 0.915 0.761 

ResNet50 [45] 0.962 0.828 0.946 0.790 0.967 0.840 0.928 0.776 0.934 0.788 

Xception [47] 0.957 0.819 0.916 0.736 0.947 0.793 0.967 0.846 0.836 0.658 

ResNet101 [45] 0.962 0.828 0.945 0.788 0.965 0.832 0.928 0.777 0.934 0.789 

Table 8: SRCC and KRCC values for different distortions seen in the CSIQ dataset. In each 

column the highest correlation is shown by red, the second highest by a blue. 

MODEL 
AWGN Jp2k Fnoise Blur Contrast 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

VGG19 [32] 0.933 0.769 0.968 0.856 0.960 0.822 0.968 0.849 0.942 0.793 

SqueezeNet [46] 0.950 0.795 0.972 0.862 0.952 0.802 0.972 0.857 0.935 0.776 

AlexNet [27] 0.944 0.786 0.967 0.845 0.949 0.796 0.969 0.847 0.945 0.798 

ResNet50 [45] 0.936 0.772 0.957 0.827 0.947 0.794 0.811 0.640 0.642 0.438 

Xception [47] 0.859 0.667 0.952 0.812 0.907 0.723 0.629 0.464 0.676 0.451 

ResNet101 [45] 0.922 0.750 0.951 0.815 0.947 0.791 0.791 0.618 0.675 0.463 

 

In addition to accuracy, the computational complexity and inference speed of Convolutional Neural 

Networks (CNNs) play a critical role in determining their suitability for real-time applications. To 

compare the efficiency of each model, we evaluate the frames per second (FPS) performance of 

the CNNs employed in this study, including VGG19, SqueezeNet, AlexNet, ResNet50, ResNet101, 

and Xception. FPS is measured under identical hardware conditions using the same image quality 

assessment task. This metric provides an indication of how many images a model can process per 

second, giving an empirical assessment of computational load.  

The results in Table 9 indicate significant variations in FPS across the different architectures. 

SqueezeNet, despite being the best model in this study, also demonstrated the highest FPS at 142, 

making it a strong candidate for real-time applications where both speed and accuracy are critical. 

VGG19, another high-performing model in terms of accuracy, achieved an FPS of 28, which 

reflects its more complex architecture and subsequently slower processing speed. AlexNet, ranked 

third in accuracy, performed efficiently in terms of speed with 120 FPS, offering a good balance 

between accuracy and real-time capability. On the other hand, ResNet50 and ResNet101, which 

performed poorly in terms of accuracy in this task, exhibited moderate to low FPS scores at 46 and 

27, respectively, underscoring their inefficiency in both accuracy and speed for this particular 

application. Finally, Xception, which performed the worst in terms of accuracy, achieved a high 

FPS of 139. 

Table 9: Comparison of Convolutional Neural Networks (CNNs) in terms of frames per second 

(FPS) performance during an image quality assessment task, reflecting the computational 

complexity of each model. 

MODEL Frames Per Second (FPS) 

VGG19 [33] 28 

SqueezeNet [46] 142 

AlexNet [28] 120 

ResNet50 [45] 46 

Xception [47] 139 

ResNet101 [45] 27 
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4.4. Comparison to the State of the Art 

In this section, we compare the results of our top two models with state-of-the-art metrics in Image 

Quality Assessment (IQA). The aim is to evaluate the performance of our models and ascertain 

their effectiveness in the field. Table 10 displays the Spearman Rank Order Correlation Coefficient 

(SRCC) and Kendall Rank Correlation Coefficient (KRCC) values obtained by our models, along 

with those of other existing models, including the original DISTS which is based on VGG16. 
 

Table 10: Performance comparison of our top two models against five IQA models on four 

standard IQA databases. Larger SRCC, and KRCC numbers represent better performance. Bold 

indicates the top result, and underlining signifies the second-best performance. 

CNN Model 
LIVE [42] CSIQ [13] TID2013 [41] KADID10K [35] 

SRCC KRCC SRCC KRCC SRCC KRCC SRCC KRCC 

DISTS [18] 0.954 0.811 0.929 0.767 0.830 0.639 0.887 0.709 

PieAPP [48] 0.919 0.750 0.892 0.715 0.876 0.683 0.836 0.647 

LPIPS [16] 0.932 0.765 0.876 0.689 0.670 0.497 0.843 0.653 

A-DISTS [9] 0.955 0.812 0.942 0.796 0.836 0.642 0.890 0.715 

SWLGV [49] - - 0.922 0.755  0.804 0.637   0.840  0.655 

DeepDC [50] 0.940 0.781 0.937 0.774 0.844 0.651 0.905 0.733 

VGG19-based (ours) 0.956 0.819 0.948 0.802 0.857 0.667 0.900 0.725 

SqueezeNet (ours) 0.955 0.816 0.929 0.763 0.883 0.699 0.907 0.732 

         

 

Remarkably, our two models, based on VGG19 and SqueezeNet, consistently emerged as either 

the best, second-best, or highly competitive performers across the evaluated metrics. The VGG19-

based model showed superior performance in the CSIQ, LIVE, and KADID-10k datasets, 

demonstrating its ability to capture intricate image features and align closely with human 

perceptual judgments. The SqueezeNet-based model, despite being the most lightweight, 

performed exceptionally well, particularly on the TID2013 and kadid10k datasets, and showcased 

strong competitiveness on other datasets such as LIVE and CSIQ. This highlights SqueezeNet's 

efficiency and robustness in various IQA scenarios.  

Overall, our comparative analysis demonstrates that the proposed models are highly effective for 

IQA tasks, often surpassing or matching the performance of existing state-of-the-art methods. This 

underscores the potential of leveraging optimized CNN architectures for developing robust and 

accurate image quality assessment tools. 
 

5. Conclusion and Future Work 

In this paper, we conducted a comprehensive analysis of several CNNs as feature 

extractors in a DISTS framework for IQA task. We illustrated that with proper 

optimization of learnable parameters, the proposed CNNs gained tremendous 

improvements in IQA performance. Our results very well support the effectiveness of 

deep learning methods in precisely characterizing and predicting perceptual image 

quality, thus outperforming classic IQA methods.  

These experiments turned out quite impressive for models like VGG19 and 

SqueezeNet across different image quality datasets. More interestingly, SqueezeNet 
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happened to be the lightest among all those models; it matched the performance or 

even excelled in some cases, proving its efficiency and strength. These models are 

very good at learning fine patterns of visuals and feature hierarchies and staying close 

to human perceptual judgments. These models clearly show better performance, thus 

underlining the necessity of choosing appropriate CNN architectures and their 

optimum parameters for a certain IQA task.  

Some promising results are obtained, but some future works remain open. One 

perspective is to study more CNN architectures and advanced deep learning 

techniques, including transformer models, in order to enhance IQA performance. Other 

perspectives are new search algorithms, such as metaheuristic algorithms, to optimize 

model parameters more efficiently, and taking into account texture similarity and 

tolerance of texture variation to make IQA models more robust. 

It is obvious from our results that deep learning–based approaches bring a significant 

contribution to the field of image quality assessment. Further research in techniques 

and refinement will be done with a view to building more accurate and reliable models, 

all contributing toward higher quality in the visual content delivered to the end-user. 
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