
 

Corresponding author E-mail:  hossammady97@eng.aswu.edu.eg  

Received October 20, 2024, revised November 1, 2024, accepted November 2, 2024. 

(ASWJST 2021/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095)        https://journals.aswu.edu.eg/stjournal 

 

 

 

 

Aswan University Journal of Science and Technology 

 

 

Volume 4,  issue 4 

 

DeepMSE: A Lightweight Image Quality Assessment Model Based on 

SqueezeNet and MSE for Resource-Constrained Systems 

Hossam Mady1, Adel Agamy1, Abdelmageed Mohamed Aly1, Mohamed Abdel-Nasser1 
1Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, 

Egypt 

 

Abstract 

Image Quality Assessment (IQA) is very important in many different applications. It is therefore 

not surprising that research into IQA has received extensive attention during the last three decades. 

Recent models in the field of IQA demonstrate strong performance on several standard IQA 

datasets. However, their reliance on computationally intensive deep learning architectures and/or 

complex calculations makes them unsuitable for resource-constrained systems such as embedded 

and mobile Systems. In this paper we propose a Full Reference (FR) IQA model, called DeepMSE, 

which is based on SqueezeNet for feature extraction and Mean square Error (MSE) for aggregation. 

Unlike existing FR-IQA models, the proposed model doesn't require training or tuning with Mean 

Opinion Scores (MOSs), which helps mitigate the risk of overfitting. Additionally, our model 

reduces computational complexity while maintaining high performance, making it well-suited for 

deployment on mobile or edge devices. Experimental evaluations across large standard IQA 

datasets demonstrate the high performance of our model and its superiority over state-of-the-art 

methods in aligning with human visual perception, all while maintaining simplicity, compact size, 

and reduced complexity. 
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1. Introduction 

Image Quality Assessment (IQA) has received extensive attention over the past three decades, as 

it plays a critical role in a wide range of computer vision applications. As visual content spreads 

throughout media channels, IQA techniques that are automated, reliable, efficient, and perceptually 

relevant are becoming more and more important [1]. Full-Reference Image Quality Assessment 

(FR-IQA) is a category of IQA that provides a quality score for a distorted image by comparing it 

with a reference (pristine) image.  

Knowledge-driven FR-IQA aims to mimic the Human Visual System (HVS) to accurately predict 

perceived image quality. Common examples of knowledge-driven FR-IQA include Mean Squared 

Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) [2] 

and its variants [3][4][5], among others. Such models have become widely adopted due to their 

simplicity and computational efficiency. However, despite their popularity, these models often 

struggle to align precisely with human visual perception, especially in the presence of complex 

distortions. 
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In contrast, data-driven FR-IQA models utilize the power of deep learning and convolutional neural 

networks (CNNs) to discover and learn features that best describe image quality, rather than rely 

on handcrafted features. Examples such as Deep Similarity for image quality assessment (DeepSim) 

[6], Learned Perceptual Image Patch Similarity (LPIPS) [7] and Deep Image Structure and Texture 

Similarity (DISTS) [8] demonstrate strong correlations with human judgments of image quality. 

However, existing deep learning models for IQA often require substantial computational resources, 

making them impractical for real-time and embedded applications. In response, this work presents 

a lightweight IQA model that employs SqueezeNet [9] which is a compact CNN architecture to 

extract deep features. The choice of SqueezeNet ensures that the model remains resource-efficient 

without compromising on the quality of the extracted features. Aggregation is achieved through 

MSE, a simple yet effective metric that provides a measure of perceptual similarity based on feature 

map differences. 

The proposed model is designed with real-time applications in mind, such as mobile image 

processing, augmented reality, and quality control in compressed image transmission systems. By 

delivering a balance between efficiency and perceptual accuracy our model offers a practical 

solution for scenarios where computational resources are constrained but high-quality IQA is 

necessary. 

2. Related Work 

Traditional FR-IQA models have relied heavily on metrics such as PSNR and SSIM. While PSNR 

is simple and computationally efficient, it does not correlate well with human visual perception. 

SSIM [2], introduced by Wang et al. has been a widely adopted metric as it accounts for structural 

information by comparing luminance, contrast, and structural similarity between the reference and 

distorted images. Despite its popularity, SSIM has limitations, particularly when it comes to images 

with complex distortions or color variations, where it fails to capture perceptual quality accurately. 

To address the limitations of SSIM, several advanced FR-IQA models have been proposed. Multi-

Scale SSIM (MS-SSIM) [3] extends SSIM by incorporating multi-scale analysis, allowing it to 

capture distortions at different scales. Additionally, Visual Information Fidelity (VIF) [10] 

introduced by Sheikh and Bovik employs a natural scene statistics model to better correlate with 

the human visual system. Although these models achieve higher accuracy than traditional metrics, 

they often involve complex computations, making them less suitable for real-time applications 

where efficiency is paramount. 

Another category of advanced FR-IQA models leverages deep learning. These models typically 

employ convolutional neural networks (CNNs) or other neural network architectures to extract 

deep features from images. By training on large-scale datasets, these models are capable of 

capturing intricate visual details and outperform traditional metrics in terms of accuracy. However, 

the reliance on large datasets and high computational costs limit the practical applicability of these 

methods, especially in scenarios requiring low-latency or edge-device deployment. 

Recent advancements have introduced hybrid approaches that combine traditional perceptual 

metrics with deep learning components to enhance both accuracy and efficiency. Hybrid models 

typically use lightweight neural networks or leverage transfer learning to minimize computational 

demands. Despite these advancements, achieving a model that provides high accuracy and 

efficiency simultaneously remains a challenge, particularly when aiming for real-time performance 

on limited hardware resources. 

This paper proposes a novel FR-IQA model that addresses the limitations of existing methods by 

introducing an efficient and effective approach that balances computational efficiency with 

accurate perceptual quality assessment. The proposed model utilizes SqueezeNet architecture as 

feature extractor and calculates the final score using MSE. By leveraging these components, the 
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model demonstrates superior performance while maintaining low computational costs suitable for 

real-time applications. 

3. Methodology  

Our model extracts features from both the reference and distorted images, compares these features 

at multiple stages, and aggregates the differences to predict the overall image quality. This section 

describes the detailed methodology. 

3.1 Feature extraction using SqueezeNet 

The proposed model as shown in figure 1 utilizes five stages from SqueezeNet for feature 

extraction. We selected SqueezeNet as the feature extraction backbone primarily for its efficiency 

in resource-constrained systems. SqueezeNet achieves AlexNet-level accuracy with significantly 

fewer parameters (up to 50x fewer), resulting in a compact model that requires less memory and 

computational power. The lightweight architecture allows our model to perform real-time IQA 

without compromising the quality of extracted features. Using SqueezeNet allows us to balance 

computational efficiency with perceptual accuracy, ensuring that the model is both fast and capable 

of accurately aligning with human visual perception. 

 

 
Figure 1. DeepMSE Architecture 

Both the reference image (𝐼ref) and the distorted image (𝐼dist) are fed into the model simultaneously. 

Both images produce five feature maps. The feature maps at each stage represent the extracted 

image features at different levels of abstraction, where 𝐹ref,𝑖 and 𝐹dist,𝑖 represent the feature maps 

for 𝐼ref and 𝐼dist at stage 𝑖, respectively. 

3.2 MSE Calculation Between Corresponding Feature Maps and aggregation 

For each corresponding pair of feature maps (𝐹ref,𝑖,  𝐹dist,𝑖) obtained from the reference and distorted 

images at stage 𝑖, the model computes a feature similarity score. The similarity score 𝐷𝑖 is 

calculated as the MSE between the two feature maps: 

𝐷𝑖 = 𝑀𝑆𝐸(𝐹𝑟𝑒𝑓,𝑖, 𝐹𝑑𝑖𝑠𝑡,𝑖) =
1

𝑁
∑(𝐹𝑟𝑒𝑓,𝑖,𝑗 − 𝐹𝑑𝑖𝑠𝑡,𝑖,𝑗)

2
𝑁

𝑗=1

 (1) 

where 𝑁 is the number of elements in the feature maps. 
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The distortion scores 𝐷𝑖 from each of the five stages are then aggregated to produce an overall 

quality score. Aggregation is performed by taking the average of the five MSE values, representing 

the overall perceived difference between the reference and distorted images: 

𝑄 =
1

5
∑ 𝐷𝑖

5

𝑖=1

 (2) 

where Q is the final predicted quality score, indicating the level of distortion present in the distorted 

image relative to the reference image. Lower Q value suggests higher similarity and, thus better 

quality. 

4. Experiments 

4.1 Implementation Details 

We employed SqueezeNet architecture as the feature extractor, initialized using pre-trained weights 

from ImageNet. During evaluation, each image is resized to 256×256 pixels. A computer with an 

Intel(R) core(TM) i7-9700K processor (3.60 GHz) and 32 GB of RAM was used for this 

experiment. Using PyTorch version 2.2.0, we ran all computations on an NVIDIA GeForce GTX 

1650 GPU. CUDA version 12.1 was installed on our Windows 10 64-bit system in order to facilitate 

GPU acceleration. 

4.2 Results 

To demonstrate the effectiveness of our model, we test it on two large IQA datasets which contain 

a large number of distorted images and subjective human evaluations of each. The datasets are 

TID2013 [11] and KADID-10K [12]. TID2013 consists of 25 original images distorted with 24 

types of distortions —such as Gaussian noise, image compression artifacts, and color saturation 

changes— at five levels of severity for each type of distortion, so that the total number of distorted 

images is 3000 images. Each image is accompanied by mean opinion scores (MOS) gathered from 

human assessments. On the other hand, KADID-10k consists of 81 original images distorted with 

25 types of distortions at five levels of intensity, resulting in 10125 distorted images, each with an 

associated difference mean opinion score (DMOS). The distortions include types such as white 

noise, contrast change, and chromatic aberration. Together, these datasets offer a diverse range of 

distortion types and levels, enabling robust testing of our model’s accuracy and generalizability in 

image quality assessment. 

Table 1 shows the SRCC and KRCC values for our model compared to some state-of-the-art models. 

It is obvious that our model outperforms other traditional models  (PSNR, SSIM [2], MS-SSIM [3], 

FSIMc [13], VIF [10], and NLPD [14]) and data-driven models (PieAPP [15], LPIPS [7], DISTS 

[8], DeepDC [16], and SWLGV [17]) achieving SRCC =0.877 and KRCC = 0.697 on TID2013 

and SRCC = 0.901 and KRCC = 0.723 on KADID-10k dataset. 

Table 1. Performance comparison between our model and various state-of-the-art IQA methods on 

the TID2013 and KADID-10k datasets. The best two results are highlighted in bold. 

IQA Model 
TID2013 [11] KADID-10k [12] 

SRCC KRCC SRCC KRCC 

PSNR 0.687 0.496 0.676 0.488 

SSIM [2] 0.720 0.527 0.724 0.537 

MS-SSIM [3] 0.786 0.605 0.826 0.635 

FSIMc [13] 0.851 0.666 0.854 0.665 

VIF [10] 0.677 0.518 0.679 0.507 

NLPD [14] 0.800 0.625 0.812 0.623 

PieAPP [15] 0.876 0.683 0.836 0.647 
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LPIPS [7] 0.670 0.497 0.843 0.653 

DISTS [8] 0.830 0.639 0.887 0.709 

DeepDC [16] 0.844 0.651 0.905 0.733 
SWLGV [17] 0.804  0.637 0.840  0.655 
DeepMSE (Ours) 0.877 0.697 0.901 0.723 

 

Figure 2 and Figure 3 compare our model with several existing FR-IQA methods in terms of frames 

per second (FPS) and floating point operations (FLOPS). The bar chart in Figure 2 highlights our 

model’s FPS of 248.44, the highest among the compared methods, while Figure 3 shows it achieves 

the lowest FLOPS at 0.694 billion, indicating both high processing speed and low complexity. This 

proves the efficiency of our method, which makes it not only more accurate, as shown in Table 1, 

but also much faster and more lightweight. The combination of high FPS and low FLOPS of our 

model indicates its suitability for real-time applications, where both speed and accuracy are crucial 

factors. 

Figures 4 and 5 present heatmaps displaying SRCC and KRCC values for different distortion types 

in the CSIQ [18] and LIVE [19] datasets, respectively. The consistently high SRCC and KRCC 

values across all distortion types demonstrate the superiority and generalizability of our model. 

Notably, even the lowest results observed—SRCC = 0.94 and KRCC = 0.80 for Contrast 

Decrement in CSIQ, and SRCC = 0.93 and KRCC = 0.77 for Fastfading in LIVE—are 

exceptionally high. These results indicate that the model performs robustly across various 

distortion types without noticeable limitations, underscoring its reliability and effectiveness in 

diverse quality assessment scenarios. 

 
Figure 2. Comparison of FPS performance between the proposed DeepMSE model and various 

state-of-the-art IQA methods. 
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Figure 3. Comparison of FLOPS performance between the proposed DeepMSE model and various 

state-of-the-art IQA methods. 

5. Conclusion 

In this paper, we proposed a new lightweight FR-IQA model based on SqueezeNet and mean 

squared error (MSE) which optimizes both accuracy and computational efficiency for resource-

constrained systems. Our model was tested on two widely used datasets, TID2013 and KADID-

10k, and demonstrated excellent performance when compared to state-of-the-art IQA methods. 

Specifically, the proposed model achieved high SRCC and KRCC, which indicates its effectiveness 

in evaluating image quality. Additionally, the model's processing speed, measured in FPS, 

outperformed other methods, proving its suitability for real-time applications. 

 
Figure 4. Model performance on different distortion types in the CSIQ [18] dataset. 
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Figure 5. Model performance on different distortion types in the LIVE [19] dataset. 

The success of this model can be attributed to the integration of the lightweight SqueezeNet 

architecture and the simplicity of MSE. Our results suggest that this approach is promising for 

practical deployment in various image quality evaluation tasks, especially in scenarios where 

computational resources are limited. Future work could further optimize the model by exploring 

other loss functions to enhance both accuracy and computational efficiency even more. 
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