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Abstract 

Abnormal blood glucose levels pose a significant risk to patient health, as they can cause severe 

complications and potentially become life-threatening if not promptly identified and managed. 

Given the importance of early detection, there has been a growing focus on the development of 

effective, non-invasive techniques for monitoring blood glucose. One such promising approach 

involves the use of photoplethysmography (PPG) signals, which have attracted considerable 

attention within both the medical and engineering communities. Over the past decade, researchers 

have leveraged advancements in artificial intelligence (AI) and machine learning to refine methods 

for estimating blood glucose levels using PPG-based data. These efforts span a wide range of 

algorithms and modelling techniques, including deep learning architectures, signal processing 

methods, and feature extraction strategies. This survey aims to provide a comprehensive overview 

of the latest contributions to this field, examining how various approaches address challenges such 

as measurement accuracy, individual variability, and real-time feasibility. By critically evaluating 

these AI-driven techniques, we shed light on the current state of PPG-based blood glucose 

measurement and outline potential directions for future research and clinical application. 

Keywords: digital medicine; blood glucose; non-invasive; photoplethysmography; deep learning; 

continuous glucose monitoring. 

1. Introduction 

Diabetes is a long-term global health issue, contributing to 1.5 million deaths. It ranks among the 

most significant contributors to mortality [1]. Prolonged hyperglycemia can lead to serious 

complications, including cardiovascular disease, kidney failure, and neuropathy. As the diagnosis of 

diabetes is imbalanced blood sugar levels (BGL) [2]. This marks Regular monitoring of BGL 

indispensable for preventing or delaying these adverse outcomes. Traditionally, finger-pricking 

using handheld glucometers is the most common technique for measuring BGL. Although this 

method offers a reliable reading. Repeated skin penetration often causes physical discomfort and 

emotional distress, which can result in poor adherence to the recommended monitoring frequency. 

Implantable microneedles offer a more continuous alternative, yet still carry the burden of 

invasiveness and potential patient unease. These limitations underscore the need for more user-

friendly solutions that reduce pain and inconvenience while still ensuring accurate glucose 

measurements. 
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Photoplethysmography (PPG) has emerged as a noteworthy non-invasive modality for BGL 

estimation. First developed in 1937. PPG measures changes in light absorption or reflection related 

to blood volume fluctuations in living tissue. Through either transmissive or reflective photoelectric 

sensors, this technique captures pulsatile blood flow, which is influenced by various physiological 

parameters. Crucially, PPG relies on minimal hardware, a light source, and a photodetector. This 

makes PPG highly compatible with modern wearable devices and smartphones. This integration 

capability offers a practical avenue for continuous, real-time glucose monitoring without the 

repeated skin penetration demanded by traditional methods. 

In recent years, progress in AI techniques for biomedical signal processing has fueled extensive 

research in PPG-based blood glucose level (BGL) measurement. These developments have 

empowered researchers to explore innovative methods and contribute to studies, enhancing the 

accuracy and reliability of BGL monitoring through photoplethysmography (PPG). This progress has 

paved the way for more accessible, non-invasive monitoring options, offering new possibilities for 

diabetes management and improving patient outcomes. 

A key motivation for this work is the lack of an updated, focused review on PPG-based BGL 

monitoring. The most recent review [3] In this field, conducted in 2022, combined PPG with 

electrocardiographic (ECG) methods, making it the only comprehensive resource to date. However, 

this combined approach does not fully address the unique challenges, advancements, and potential 

of PPG-based BGL monitoring on its own. Given the rapid development of AI and sensor 

technologies in recent years, there is a critical need for a dedicated review that evaluates current 

progress in PPG-based BGL monitoring, highlights recent breakthroughs, and identifies remaining 

challenges. This work aims to fill that gap by providing a targeted analysis of the field, supporting 

further research and innovation in non-invasive diabetes management. 

2. Methods 

2.1 Eligibility Criteria 

The eligibility criteria for selecting articles in this systematic review are as follows: 

• Language: Only articles written in English are included. 

• Scope: Studies must focus on blood glucose level (BGL) estimation. 

• Methods: The use of traditional, machine learning, or deep learning methodologies is 

required. 

• Signal Type: Studies must specifically involve PPG signals for diabetes monitoring only. 

• Full Text: Papers not available in full text or limited to conference abstracts are excluded. 

No publication year restrictions are applied to ensure comprehensive coverage. 

2.2 Data Sources and Search Strategy 

 The following electronic databases are searched for relevant studies: IEEE Xplore and Google 

Scholar. The search strategy included combinations of keywords related to PPG signals and diabetes 

estimation, such as: 

• General terms: "PPG signal," "BGL," and "blood glucose estimation." 

https://journals.aswu.edu.eg/stjournal


(ASWJST/ Volume 05, Issue 02/ June 2025 P a g e  | 3 

 

(ASWJST 2021/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095) https://journals.aswu.edu.eg/stjournal 

 

• Advanced combinations: 

▪ "PPG signal AND BGL" 

▪ "PPG signal AND blood glucose estimation AND machine learning" 

▪ "PPG signal AND blood glucose estimation AND deep learning" 

This strategy ensured that studies using machine learning or deep learning for PPG signal-based 

blood glucose monitoring were captured. References were organized using Mendeley, where 

duplicates were removed, and three-step filtering (title, abstract, and full-text evaluation) was 

employed to finalize the selection. 

2.3  Classification of Existing Methods 
After applying the Eligibility Criteria (Section 2.1) and Search Strategy (Section 2.2), the included 

studies can be systematically classified based on: 

1. Data Characteristics 

• Number of Subjects (small-scale vs. large-scale studies) 

• Blood Glucose Levels (BGL) Range (e.g., normal to hyperglycemic, varying severity) 

• PPG DEVICE 

• Sampling Frequency 

• Population Details (gender split, age ranges, or any specific clinical condition) 

Table 1: Study Details and Dataset, and PPG Device Specifications. 

Reference Subjects Samples Gender BGL Range 
(mg/dL) 

PPG Device Frequency 
(Hz) 

Monte-Moreno [4] 410 4500 213/197 49–393 Oximeter 75 
Zhang et al. [5] 18 251 NA <200 Oximeter 100 
Chowdhury et al. [6] 18 88 NA <150 Smartphone 

Camera 
30 

Habbu et al. [7] 611 611 344/267 70–450 Custom 
Microcontroller 

100 

Hina et al. [8] 200 200 NA <160 FPGA System 100 
Manurung et al. [9] 89 51 50/39 <80, >130, 

Mid-range 
Arduino 50 

Gupta et al. [10] NA NA NA NA Arduino 35 
Salamea et al. [11] 217 7740 NA 58.6–390.7 Wristband 64 
Hina et al. [12] 200 NA 112/88 80–400 SoC 128 
Guzman et al. [13] 5 100 3/2 NA Oximeter 60 
Islam et al. [14] 52 52 38/14 68–211 Fingertip Videos 30 
Prabha et al. [15] 217 7263 90/127 58.6–390.7 Wristband 64 
Reguig et al. [16] 10 10 10/0 NA Arduino 60 
Alghlayini et al. [17] 52 198 NA 68–211 Smartphone 

Camera 
30 

Shama Satter et al. 
[18] 

34 34 17/17 80–200 Custom 
Oximeter 

24 

Adigüzel et al. [19] 217 7263 90/127 58.6–390.7 Wristband 64 

Liao et al. [20] 15 NA NA 84–221 Procomp5 
Infiniti 

256 

Gupta et al. [21] 26 NA NA 84–199 SFH7050 
Module 

NA 
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2. Methodology 

• Machine Learning (ML)-Based Methods  

Classic machine learning algorithms (e.g., Support Vector Machines, Random 

Forests) require feature extraction and often manual feature engineering. 

• Deep Learning (DL)-Based Methods 

Neural network-based approaches (e.g., CNNs, RNNs/LSTMs, Transformers) 

capable of end-to-end learning, often requiring less manual feature engineering 

but larger datasets. But they require substantial data, higher computational 

resources, and may lack interpretability compared to simpler methods. 

3. Model Training 

• Training Window (length of data used for training, real-time vs. retrospective) 

4. Performance Evaluation 

• Evaluation Metrics (MAE, RMSE, MARD, accuracy, sensitivity, specificity, Clarke 

error grid, etc.) 

2.4 Data Extraction 

For each study visited, the coming information was also involved: (i) study objective, (ii) number 

of subjects, (iii) number of signals, (iv) gender split (male/female), (v) blood glucose levels (BGL) 

range, (vi) sampling frequency, (vii) extracted features, (viii) AI approach, (ix) AI algorithm, (x) 

training window, and (xi) Evaluation Metrics. The results were analyzed to highlight the advantages 

and disadvantages of each approach, along with potential future improvements. 

3. Challenges and future extensions 

3.1. The Effect of the dataset 

While generating datasets for PPG-based BGL models, diversity and representativeness are 

critical considerations. A representative dataset includes various demographic information such as 

gender, age, skin tones, weight, and height, along with varied BGL distributions. BGL distributions 

should contain the following ranges: hypoglycemic (<70 mg/dL), normal (70–140 mg/dL), and 

hyperglycemic (>140 mg/dL). This ensures the model generalizes well and performs accurately 

across different populations and conditions. Conversely, non-representative datasets are typically 

homogeneous, reflecting a single demographic or BGL distribution. Such datasets produce models 

that fail to generalize to practical, real-world scenarios, as they perform well only within their 

narrow training confines. This lack of representativeness undermines the model's applicability and 

reliability. 

The proposed survey involves studies with volunteer numbers ranging from five to 611. 

Moreover, eight out of eighteen studies have their whole blood glucose level (BGL) readings below 

250 mg/dL, as mentioned or deduced from Clarke’s error grid - while three studies did not report 

this information, as shown in figure 1. This means that more than half of the studies do not 

adequately represent an important segment of readings. Besides the insufficient number of 

participants, eleven studies have fewer than 150 participants, as shown in figure 2. Consequently, 

these datasets conditions are insufficient for effectively training machine learning (ML) or deep 
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learning (DL) models as they are data-driven. Therefore, it is critical to have a larger and more 

diverse dataset to ensure that the trained models are generalized, accurate, and capable of 

capturing the complexity and the variability of real-world scenarios. 

Table 2: Methodology, Features, and Evaluation Metrics. 

Reference Method Algorithm Features Window Size Metrics 

Monte-
Moreno [4] 

Machine 
Learning 

Random Forest (RF) 33 5 s r = 0.9; CEG: [87.7% A, 
10.3% B, 1.9% D] 

Zhang et al. 
[5] 

Machine 
Learning 

SVR + Genetic 
Algorithm (GA) 

22 2 s R² = 0.97; RMSE = 1.58 
mg/dL; MAPE = 6.04%; 
CEG: [100% A] 

Chowdhury et 
al. [6] 

Machine 
Learning 

Principal 
Component 
Regression (PCR) 

5 60 s SEP = 18.31 mg/dL; 
CEG: [82.6% A, 17.4% 
B] 

Habbu et al. 
[7] 

Deep 
Learning 

Neural Network 
(NN) 

Time/Freq. 
+ SPA 

60 s R² = 0.91; r = 0.95; CEG: 
[83% A, 17% B] 

Hina et al. [8] Machine 
Learning 

Fine Gaussian SVR 
(FGSVR) 

10 10 s MARD = 8.97% 

Manurung et 
al. [9] 

Deep 
Learning 

Neural Network 
(NN) 

7 24 s MAE = 5.855 mg/dL 

Gupta et al. 
[10] 

Machine 
Learning 

Random Forest (RF) 22 28.5 s R² = 0.62–0.91 

Salamea et al. 
[11] 

Machine 
Learning 

Random Forest (RF) 33 5 s MSE = 202.6 mg/dL; 
MAE = 8.59 mg/dL; r = 
0.88 

Hina et al. [12] Machine 
Learning 

Fine Gaussian SVR 
(FGSVR) 

6 1 s R² = 0.937; MARD = 
7.62% 

Guzman et al. 
[13] 

Machine 
Learning 

SVM + Lasso + 
Elastic Net 
Ensemble 

20 10 min MAE = 16.24 mg/dL; 
RMSE = 18.63 mg/dL 

Islam et al. 
[14] 

Deep 
Learning 

Partial Least 
Squares Regression 
(PLS) 

5 50–60 s SEP = 17.02 mg/dL 

Prabha et al. 
[15] 

Machine 
Learning 

Extreme Gradient 
Boost Regression 
(XGBR) 

5 150 s MAE = 5.21 mg/dL; SEP 
= 5.53 mg/dL; R² = 
0.99; CEG: [98.97% A] 

Reguig et al. 
[16] 

Machine 
Learning 

Linear Regression 2 NA R² = 0.89–0.97 

Alghlayini et 
al. [17] 

Deep 
Learning 

Bayesian 
Optimization-Based 
CNN 

Raw PPG 
Signal 

20 s RMSE = 25.88 mg/dL; 
MAE = 16.91 mg/dL; 
CEG: [92.85% A] 

Shama Satter 
et al. [18] 

Machine 
Learning 

CatBoost 50 30 s r = 0.96; RMSE = 10.94 
mg/dL; R² = 0.92; MAE 
= 8.01 mg/dL 

Adigüzel et al. 
[19] 

Machine 
Learning 

CatBoost 51 150 s R² = 0.71; RMSE = 
39.13 mg/dL; MAE = 
25.21 mg/dL 

Liao et al. [20] Deep 
Learning 

Hybrid CNN + LSTM Raw PPG 
Signal 

1 s MAE = 4.7 mg/dL; 
RMSE = 11.146 mg/dL 

Gupta et al. 
[21] 

Machine 
Learning 

Extreme Gradient 
Boost Regression 
(XGBR) 

30 3 s CEG: [96.15% A, 3.85% 
B] 
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Figure 1: Datasets BGL Distribution 

 
Figure 2: Histogram of datasets participants. 

3.3. Sampling Frequency 

As shown in section 3.2, portability is one of the essential goals of the PPG-capturing technique. 

Therefore, sampling frequency should be considered due to its vital role in battery life and 

computational complexity. Higher sampling frequencies consume more power and require greater 

computational resources. This is evident in most studies, as eleven employed sampling frequencies 

lower than 64 Hz, along with four employed sampling frequencies between 64 and 144, while only 

one used a higher sampling frequency, as shown in Figure 4. 

 
Figure 3: Pie chart of PPG capturing devices. 
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Table 3: PPG capturing devices. 

 
Figure 4: Histogram of datasets sampling frequencies. 

3.4. Feature Extraction 

Feature extraction is vital for estimating BGL from raw PPG signals. Feature extraction spans a wide 

spectrum from basic morphological and timing features to sophisticated nonlinear and deep 

learning-based representations. While traditional hand-crafted features offer interpretability and 

can be extracted with relatively small datasets, modern data-driven methods can discover latent 

patterns strongly linked to glucose variations. 

Therefore, existing approaches can generally be categorized into three classes: 

1. Machine learning with feature extraction: Traditional ML algorithms combine 

physiological information. Such as time-domain features -like peak amplitudes, pulse 

widths, and intervals- capture fundamental waveform morphology and timing. Besides, 

in the frequency domain, techniques such as the Fourier Transform quantify power 

distribution and dominant frequencies. They can reveal periodic changes in autonomic 

regulation that may correlate with BGL. These metrics can reflect vascular changes 

potentially linked to glucose fluctuations. And require relatively small datasets. However, 

they rely on an explicit feature extraction step before training. 

2. Deep learning with feature extraction: These methods incorporate DL components but 

still depend on handcrafted features, limiting the potential for fully automated learning. 

3. Deep learning from raw PPG signals: This approach exploits DL’s ability to autonomously 

learn features directly from the raw data, thus maximizing the potential of deep 

architectures. 

PPG-Capturing 
Technique 

Number of 
Studies 

Description 

Oximeter 3 The most conventional method for capturing PPG signals. 
Self-designed 
oximeter 

7 Involves custom-built devices using microcontrollers like 
Arduino, FPGA, or a system-on-chip 

Wristband  3 Utilizes wristbands with integrated PPG sensors 
Smart phone 3 Captures PPG signals using videos of fingertips recorded by 

smartphones. 
Specialized Modules
  

2 Uses specialized hardware modules to capture PPG signals, such 
as Procomp5 Infiniti and the SFH 7050 module. 
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Before DL became a trend, physiological signals were primarily processed using ML. ML methods 

can be trained effectively with smaller datasets. In contrast, DL methods usually require larger 

datasets but can learn complex feature representations on their own. Studies [15, 16, 18, 19] 

demonstrate that feature selection significantly impacts accuracy. And they proved that redundant 

or poorly chosen features can mislead the training process and introduce errors during calculation. 

Consequently, future research should consider adopting the third approach to fully harness DL’s 

capacity for automatic feature extraction from raw PPG signals. 

3.5. The Applied Models 

Recent advancements in artificial intelligence have emphasized the complementary strengths 

and limitations of machine learning (ML) and deep learning (DL) techniques in analyzing 

photoplethysmography (PPG) data for monitoring blood glucose levels (BGL), as in table 3. 

Various machine learning and deep learning models have been applied, including random forest 

(RF), fine gaussian support vector regression (FGSVR), Support vector regression (SVR) with genetic 

algorithm (GA), principal component regression (PCR), extreme gradient boost regression (XGBR), 

categorical boosting (CatBoost), neural network (NN), ensemble (SVM, Lasso, Elastic net) model, 

partial least square regression (PLS), linear regression, Bayesian optimization-based convolutional 

neural network (CNN), and hybrid CNN and long short-term memory (LSTM).  

The most utilized models are random forest and gaussian support vector regression, each applied 

in three studies, as random forest (RF) combines multiple decision trees to capture complex, non-

linear relationships in data and is relatively robust to outliers, even when handling a large number 

of features, thus reducing the risk of overfitting. It also offers some interpretability through feature 

importance scores, which can be valuable in applications that demand transparency. Furthermore, 

RF is well-suited for small to medium-sized datasets with moderate dimensionality, striking an 

effective balance between performance and interpretability. In scenarios where rapid 

experimentation and reasonable accuracy are prioritized over exhaustive hyperparameter tuning, 

RF frequently serves as a strong and practical baseline choice.  

While support vector regression (SVR) is recognized for its robust theoretical framework and 

capacity to manage complex, high-dimensional data, especially when kernel functions (e.g., 

Gaussian) are applied. This approach often generalizes well even from relatively small training sets, 

making it particularly attractive in scenarios where data collection is costly or limited, such as in 

biomedical applications. However, SVR can become computationally expensive as the dataset 

grows, necessitating careful consideration of resource constraints. When accuracy and reliability are 

paramount, and the dataset is not exceedingly large, SVR remains a compelling and effective 

modeling option. After RF and SVR come principal component regression, extreme gradient boost 

regression, and categorical boosting, as shown in figure 5. Therefore, there are many areas to be 

discovered in applying various DL models. 

3.6. Window size 

In the reviewed works, various window sizes of PPG signals were employed before feeding them 

into machine learning or deep learning models, ranging from one second to several minutes. The 

choice of window size for the PPG signal varied significantly, reflecting its critical role in preparing 

input data for machine learning or deep learning models. The window size, which defines the 
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duration of the PPG signal segment analyzed by the model, directly influences the temporal 

resolution of the features extracted. Across the studies, window sizes ranged from a second to 

several minutes, with shorter windows (e.g., 1-30 seconds) capturing rapid changes but potentially 

introducing more noise, while longer windows (e.g., 30-600 seconds) provide smoother signals at 

the expense of losing finer details. Shorter windows were typically favored for real-time monitoring 

applications where computational efficiency and responsiveness are crucial, whereas longer 

windows were used in scenarios requiring more comprehensive analysis of PPG trends. 

Moreover, methods for determining the optimal window size varied across studies, ranging from 

empirical tuning based on domain knowledge to systematic evaluations on validation datasets. 

Despite this diversity, challenges persist, such as the absence of universally accepted guidelines and 

the need to balance performance and efficiency for PPG-based BGL estimation. Advancing this area 

could involve exploring adaptive window sizing approaches or establishing standardized practices 

tailored to PPG-based BL estimation, further enhancing the overall reliability, generalizability, and 

adaptability of machine learning models in this field. 

Table 3: Comparison of Machine Learning (ML) and Deep Learning (DL) for PPG-Based BGL 

Monitoring. 

Aspect Machine Learning (ML) Deep Learning (DL) 

Data 
Requirements 

Requires smaller datasets; suitable for 
limited data scenarios. 

Data-intensive; performs better with large 
and diverse datasets. 

Feature 
Engineering 

Relies on manual feature extraction, 
requiring domain expertise. 

Automatically extracts features from raw PPG 
signals, eliminating manual intervention. 

Computational 
Cost 

Computationally efficient; feasible for 
low-power devices like wearables. 

High computational cost, requiring 
substantial resources for training and 
deployment. 

Model 
Interpretability 

Results are more interpretable, making 
them easier to trust in clinical settings. 

Acts as a "black box," reducing 
interpretability and limiting clinical 
acceptance. 

Noise and 
Artifacts 

Performance is more sensitive to noise 
due to reliance on pre-processed features. 

Robust to noise and artifacts, as raw data 
handling is a strength of DL approaches. 

Scalability Limited scalability for highly complex or 
large datasets. 

Scales well for complex, non-linear 
relationships in large datasets. 

Real-Time 
Feasibility 

Suitable for real-time applications due to 
low latency. 

Requires optimization (e.g., lightweight 
models) for real-time deployment. 

Advantages - Easier to implement and 
computationally cheaper. 

- Excels at capturing non-linear relationships. 

 
- Suitable for resource-constrained 
applications. 

- Eliminates the need for manual feature 
selection. 

Limitations - Dependent on the quality of manual 
feature extraction. 

- High resource demands and overfitting risks 
for small datasets. 

Proposed 
Enhancements 

- Hybrid approaches combining ML for 
feature extraction with DL for refinement. 

- Lightweight models (e.g., MobileNet), 
synthetic data generation, and transfer 
learning. 
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Figure 5: Percentage of applied models. 

3.7. Evaluating Metrics 

Performance metrics varied across the surveyed studies. Their usage frequencies were as follows: 

mean absolute error (MAE) was employed in eight studies, making it one of the most common 

metrics for evaluating the overall accuracy of predictions by calculating the average absolute 

difference between predicted and actual values. Similarly, the coefficient of determination (R²) was 

also reported in eight studies, providing valuable insight into how much of the variance in the target 

variable, with higher R² values indicating stronger model performance. Root mean square error 

(RMSE), reported in six studies, was another frequently applied metric, highlighting larger prediction 

errors by squaring differences between predicted and actual values, penalizing significant 

deviations. Pearson's correlation coefficient (r), reported in five studies, measured the strength and 

direction of the linear relationship between predicted and actual values, capturing the model’s 

ability to outline trends. Standard error of prediction (SEP), reported in four studies, provided 

insights into the variability of predictions compared to actual values, reflecting precision. Less 

frequently used were the mean absolute relative difference (MARD) and mean absolute 

percentage error (MAPE), both appearing in two studies. These metrics offered ways to assess 

errors in relation to actual values, with MARD focusing on relative errors and MAPE providing 

percentage-based evaluation, making it easier to compare across datasets of different scales. Mean 

square error (MSE) and relative error (RE) were reported in only one study using each. MSE, like 

RMSE, measures the average of the squared differences but without taking the square root, while 

RE expresses the error as a proportion of the actual value. 
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Figure 6: Pie chart of applied window sizes. 

 
Figure 7: Evaluation metrics frequency. 

4. Conclusion 

This paper provides a comprehensive review of the current advancements in non-invasive blood 

glucose level (BGL) monitoring using photoplethysmography (PPG) signals. With the increasing 

prevalence of diabetes and the need for more patient-friendly diagnostic tools, PPG-based BGL 

estimation has emerged as a promising alternative to invasive methods. Through the systematic 

evaluation of methodologies, including machine learning, deep learning approaches, and feature 

extraction techniques, we identified key trends, challenges, and opportunities in this field. 

Although noteworthy progress has been made, challenges such as ensuring dataset 

representativeness, standardizing PPG capturing techniques, and optimizing machine learning 

models continue to hinder clinical adoption. Importantly, the use of deep learning models that 

process raw PPG signals has demonstrated exciting potential by eliminating the need for feature 

engineering and improving accuracy. However, issues like dataset variability, optimization of 

sampling frequency, and window sizing remain critical obstacles to enhancing model 

generalizability. 
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This study emphasizes the urgent need for larger and more diverse datasets, as well as adaptive 

frameworks, to address these challenges. Future research should prioritize the integration of PPG 

technology into everyday wearable devices and the development of innovative AI-driven solutions 

to enable continuous, real-time glucose monitoring. Tackling these issues could establish PPG-based 

BGL monitoring systems as accessible, non-invasive, and reliable tools for diabetes management, 

advancing patient outcomes and quality of life. 
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