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Abstract 

The detection of the anomalies of the solar cells is done by testing the cells in the lab. However, this method 

is time consuming and expensive. The analysis of infrared solar cell images can reveal its status by 

classifying infrared images into anomaly and non-anomaly classes. The anomality can be due to many 

reasons. Therefore, it is required to not only classify image into anomaly and non-anomaly, but also, detect 

the anomality type. The image-based solar cell anomaly detection methods appearing in the literature used 

either machine learning or deep learning techniques. The main disadvantages of these methods are the lack 

of sufficient dataset and/or utilizing inappropriate features for classification. Machine learning requires 

robust feature extractor which are independent on the imaging condition. On the other hand, deep learning 

techniques doesn’t require feature extractor, however, results depend on the implemented filters in the 

network i.e the network architecture. In this proposal, we deal with multi-class anomaly detection from 

infrared images by using better representation of the images features by using Wavelet scattering Transform 

(WST). The WST coefficients are stable under signal deformations and globally invariant to signal 

translation and rotation. Based on the simulation results, the proposed method achieved an average accuracy 

of 99.98%.  

Keywords: Solar Cell, Anomaly Detection, Artificial Intelligence, Random Forest, Machine 

Learning 

1. INTRODUCTION 

With the increase demand of electrical energy, solar photovoltaic (PV) system, has been rapidly 

growing in the past decades. The worldwide PV capacity has reached over 500 GW, which 

increased by 142 GW in 2020 [1]. With the growth of PV systems in the industry, the amount of 

anomaly PV modules is growing. PV modules are usually suffered from temperature, rain, wind, 

dust, vegetation etc., which produce damages on the PV modules and mechanical damages during 

transportations and installations. The damages affect the lifetime of the PV modules. In turn, the 

damages of PV modules affect to the entire PV system that leads to economic efficiency and energy 

loss problems. Therefore, it is required to have a fast, reliable, and automatic non-destructive 

testing method in the inspection and maintenance of the PV modules regularly. Remote sensing of 
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PV has been attending recently with different approaches such as electroluminescence (EL) images, 

infrared radiation (IR) images, and RGB images techniques [2]. On the other hand, machine 

learning and deep learning have been used in the detection and classification process of many 

applications including solar cell anomaly detection and classification [2,3]. In [4], authors 

presented deep learning-based photovoltaics fault detection models using thermal images obtained 

from an unmanned aerial vehicle (UAV) equipped with infrared sensors. The employed models are 

DeepLabV3+, Feature Pyramid Network (FPN) and U-Net with different encoder architectures. 

The obtained results revealed intersection over union (IoU) of 79%, 85%, 86%, and dice 

coefficients of 87%, 92%, 94% for DeepLabV3+, FPN, and U-Net, respectively. However, these 

models are data dependent. 

In [5], Generative Adversarial Network (GAN) which is used in medical domain has been adapted 

to detect and locate anomalies in the solar cells. This method differentiates between two states of 

the solar cell: the normal and anomaly cells. Moreover, GAN is effective with the seen dataset 

which makes it in effective with new data. Also, it is sensitive to the change of the images’ features. 

In [6], an embedded system for defect detection and diagnosis of PV modules is proposed. Two 

models have been developed one for fault detection and the other for diagnosis. In the defect 

detection, authors classify the images into two classes: namely, defected, and non-defected. In this 

model, they achieved an accuracy of 99%. However, in the diagnosis model, the classify images 

into four classes and they achieved an accuracy of 95.55%.  In [7], a novel system for improved 

PV diagnostics using drone-based imagery is proposed. This solution consists of three main steps. 

The first step locates the solar panels within the image by using region selection. The second step 

detects the anomalies within the solar panels. The final step identifies the root cause of the anomaly. 

Authors in this work focus on the detection of anomalies within solar panels. They used a region-

based convolutional neural network (CNN). This work achieved an accuracy of 90% for the 

anomaly detection that is two-state classification.  On the other hand, wavelet scattering transform 

(WST) has been proven to be shift, scale and rotation independent. Therefore, it has been 

effectively used for image classifications. In this paper, WST is used as a feature domain to extract 

features that are insensitive to scaling and shifting rather than using time domain (TD) [8-13], 

which is sensitive to scaling, rotation and shifting. Unlike the work done in [2,3], we used the 

wavelet scattering transform as a feature domain rather than the time domain to make the system 

more robust against scaling and shifting. WST is used as a feature domain to extract features that 

are insensitive to scaling and shifting rather than using time domain. 

2. THE PROPOSED METHOD 

2.1 Preprocessing  

The block diagram of the proposed system is shown in Figure 1. The proposed system starts with 

the dataset partitioning into training, validation, and test dataset. For convenience, these images are 

transformed into 1D signals.  The second stage is the feature domain transformation. In this work, 

we use WST as the feature domain. Finally, the classification is based on the WST coefficients with 

ML classifiers.  The image-to-signal transformation is done by combining rows sequentially. 

2.2. Wavelet Scattering Transform 

To compute the WST of a signal 𝑥 , this signal is processed in three successive operations to 
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generate wavelet scattering coefficients in each stage. These operations are convolution, 

nonlinearity, and averaging respectively. Figure 2 displays multiresolution/multilayer wavelet 

scattering transforms in which the scattering coefficients should be determined at each layer [9-11] 

as follows:    

 

Figure 1: block diagram for the proposed solar cell anomaly detection 
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Figure 2: Multilayer wavelet scattering transform. 

The zeroth-order scattering coefficients are calculated using basic input averaging as follows: 

𝑆0 = 𝑥 ∗ 𝜙,                                                                                                          (1) 

                where 𝑥 is the input signal, 𝜙 is the scaling function, and * is the convolution operator. 

The high-frequency bands are captured by convolving with the mother wavelet ψλi
at scale λi. So, 

the first-order scattering coefficients, S1, are generated by averaging the modules of the lower band 

at the first scale in the filter bank λ1. 

𝑆1𝑥(𝑡, 𝜆1) = |𝑥 ⋆ 𝜓𝜆1
| ⋆ 𝜙                                                                                (2) 

In the same way, the second wavelet transform is determined as follows: 

𝑆2𝑥(𝑡, 𝜆1, 𝜆2) =∣ 𝑥 ⋆ 𝜓𝜆1
|⋆ 𝜓𝜆2

| ⋆ 𝜙                                                                (3) 

At each step, the signal at the lowest band incurs modules non-linearity and is averaged through 

the convolution by the father wavelet (low pass) 𝜙 filter as shown in fig.1. For the m-th layer, the 

scattering coefficients, 𝑆𝑚, have been computed as follows. 

𝑆𝑚𝑥(𝑡, 𝜆1, … , 𝜆𝑚) =∣ 𝑥 ⋆ 𝜓𝜆1
| ⋆ … | ⋆ 𝜓𝜆𝑚

∣⋆ 𝜙                                          (4) 

2.3 Artificial Intelligence 

Machine learning is a branch of artificial intelligence (AI). The main aim of machine learning is to 

comprehend the structure of data and fit it into models that people can comprehend and use. A solid 

prognosis requires fewer medical tests, which makes it important for ML techniques to perform 

well overall, offer medical professionals with interpretable prognostic information, and enhance 

decision-making. The main drawback of the ML technique is the requirement of a robust feature 

extractor. Medical images in spatial domain are not sufficient as a feature for the ML techniques. 

The results of using ML technique are not acceptable as in [3]. Therefore, the main clue in this 

proposal is to present WST as a feature domain to be combined with ML to classify infrared images 

into multi anomaly classes rather than anomaly and non-anomaly images.   

On the other hand, deep learning (DL) is a branch of the machine learning. Despite DL doesn’t 

require feature extraction, it requires a huge number of datasets to be efficient. Therefore, to DL 

has been combined with ML to take the benefit of DL feature extractor [14] and the ML classifier 

[3]. Even so, the performance of DL-ML classifiers is dependent on the architecture of the DL 

network. The transfer learning is used also to reduce the required dataset.   
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2.4 ML Classification Based on WST 

As a rotation independent, scaling independent and shift independent, WST is a good candidate for 

feature extraction. As has be mentioned, the ML classification is highly dependent on the extracted 

features and its ability to represent the data and differentiate between various classes. Different 

classifiers are combined with the WST to detect the solar cell anomalies including support vector 

machine (SVM), k-nearest neighbour (KNN), and random forest (RF). 

3. Results of Solar Cell Anomaly Detection 

3.1. Dataset  

The dataset consists of 20,000 infrared images that are 24 by 40 pixels each. There are 12 defined 

classes of solar modules presented in this dataset with 11 classes of different anomalies and the 

remaining class being No-Anomaly (i.e. the null case). In this work, eleven anomalies are 

differentiated in addition to the no-anomaly case. The different types of anomalies are tabulated in 

Table 1 [14]. Three examples for each class are shown in Figure 3. 

Table 1: The dataset of infrared images 

Class Name Images Description 

Cell 1,877 Hot spot occurring with square geometry in 

single cell. 

Cell-Multi 1,288 Hot spots occurring with square geometry in 

multiple cells. 

Cracking 941 Module anomaly caused by cracking on 

module surface. 

Hot-Spot 251 Hot spot on a thin film module. 

Hot-Spot-Multi 247 Multiple hot spots on a thin film module. 

Shadowing 1056 Sunlight obstructed by vegetation, man-made 

structures, or adjacent rows. 

Diode 1,499 Activated bypass diode, typically 1/3 of 

module. 

Diode-Multi 175 Multiple activated bypass diodes, typically 

affecting 2/3 of module. 

Vegetation 1,639 Panels blocked by vegetation. 

Soiling 205 Dirt, dust, or other debris on surface of 

module. 

Offline-Module 828 Entire module is heated. 

No-Anomaly 10,000 Nominal solar module. 
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a) b) c) d) e) f) g) h) i) j) k) l) 

Figure 3: Examples for training images for different classes: a) No-Anomaly, b) Diode, c) Diode-

Multi, d) Cracking, e) Cell, f) Cell-Multi, g) Soiling, h) Offline-Module, i) Shadowing, j) Hot-Spot, 

k) Hot-Spot-Multi, and l) Vegetation classes. 

3.2. Implementation Environment  

The system used for simulation is CPU Core I5, 2.6 GHz processor on a Windows 10 operating 

system. The software on which the model is implemented is MATLAB 2022a. 

3.3. Performance Metrics  

For performance measurement, multiple metrics are utilized, including confusion chart, accuracy, 

precision, recall, and F1-score. The confusion chart shows the success for each class and confusion 

with other classes. 

The accuracy of the model describes how well the model performs across classes. Accuracy is 

formulated as shown below. The accuracy can be calculated directly from the confusion chart by 

dividing the sum of diagonal by the total number of samples 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑙𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                    (5) 

Precision is the measure of the models’ capability to identify true positives, and it is calculated as 

shown below. The precession can be calculated from the confusion chart for each column by 

dividing the value at the diagonal in this column by the summation of that column.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                 (6) 

The recall is the ratio between the true positive prediction values and the sum of predicted true 
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positive and false negative values. It is calculated as shown below. The recall can be calculated 

from the confusion chart for each row by dividing the value at the diagonal in this row by the 

summation of that row.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                     (7) 

F1 score is the overall model accuracy that balances precision and recall in a positive class. It is 

calculated as represented by: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                    (8) 

 

3.4 Experimental Results and Discussion 

In this section, we present the simulation results for the infrared images classification using the 

proposed system compared with the DL method [2]. The comparison is based on four metrics: 

accuracy, precession, recall and F1-score. 

The kernel function used with SVM is Gaussian. The number of classes is four. For the WST, the 

invariance scale is set to 7, and the sampling frequency is 128. 

Table 2 shows the resulting evaluation metrics using different methods. From this table it can be 

shown that DL network proposed in [2] are efficient in detecting no-anomaly solar cell with high 

accuracy of 98%, however, it achieved a low accuracy for the overall classification due to the 

confusion between different type of anomality (71% 51%, 95%, 91%, 70%, 63%, 82%, 70%, 77%, 

28%, and 76%, for Cell, Cell-Multi, Diode, Diode-Multi, Hot-Spot, Hot-Spot-Multi, Cracking, 

Offline-Module, Shadowing, Soiling, and Vegetation, respectively). Therefore, the average 

accuracy is 72.67%.   

On the other hand, using WST transform results in better images representation and differentiation 

between different anomalies. Therefore, the combination of WST with the ML networks achieves 

higher accuracy (99.98%, 74.82% and 74.71% for the case of WST+RF, WST+KNN and 

WST+SVM networks, respectively) with high precession for the twelve classes. 

Another illustrative metric is the confusion chart that can explicitly show the number of confusions 

with different classes. The confusion charts for different methods are shown in Figure 4a, 4b and 

4c. Figure 4c shows that for the three tested classifiers networks, all the non-anomaly images are 

classified correctly to be non-anomaly so that the precession for the no-anomaly solar cell 

classification is 100%. In contrast, the proposed WST-based feature extraction achieved less 

confusion for all anomaly types and non-anomaly images, as shown in Figure 4c. 

The high-performance achievement of the WST is due to multiscale contractions, linearization of 

hierarchical symmetries, and sparse representations. Moreover, WST coefficients are stable under 

signal deformations and globally invariant to signal translation and rotation.  
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Table 2, the evaluation metrics for different classification methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approach Classifier  Class Accuracy 

(%) 

Precession 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Proposed  WST+RF No-Anomaly 

99.98 

100 100 100 

Cell 99.97 99.97 99.97 

Cell-Multi 99.70 99.90 99.80 

Diode 99.91 99.85 99.88 

Diode-Multi 100 100 100 

Hot-Spot 99.95 99.98 99.97 

Hot-Spot-Multi 100 100 100 

Cracking 99.92 99.87 99.89 

Offline-Module 100 100 100 

Shadowing 100 100 100 

Soiling  99.96 99.96 99.96 

Vegetation 100 100 100 

Proposed  WST+SVM No-Anomaly 

74.71 

97.14 76.09 85.34 

Cell 52.85 61.42 56.81 

Cell-Multi 37.75 90.28 53.24 

Diode 44.14 85.48 58.21 

Diode-Multi 63.89 70.64 67.10 

Hot-Spot 51.18 74.86 60.79 

Hot-Spot-Multi 42.87 82.17 56.35 

Cracking 69.53 78.01 73.53 

Offline-Module 38.14 91.123 53.78 

Shadowing 59.80 71.59 65.17 

Soiling  44.09 68.58 53.67 

Vegetation 36.52 87.39 51.51 

Proposed  WST+KNN No-Anomaly 

74.82 

97.97 75.17 85.07 

Cell 52.40 67.64 59.05 

Cell-Multi 22.49 91.43 36.10 

Diode 54.08 84.31 65.89 

Diode-Multi 63.29 68.34 65.72 

Hot-Spot 53.37 71.57 61.14 

Hot-Spot-Multi 51.54 89.08 65.30 

Cracking 57.21 81.85 67.35 

Offline-Module 19.71 92 32.47 

Shadowing 47.46 67.49 55.73 

Soiling  43.48 75.12 55.08 

Vegetation 24.39 79.92 37.37 

[2]  Ensemble  No-Anomaly 98 NA NA 95 

Cell 71 NA NA 72 

Cell-Multi 51 NA NA 56 

Diode 95 NA NA 96 

Diode-Multi 91 NA NA 93 

Hot-Spot 70 NA NA 71 

Hot-Spot-Multi 63 NA NA 64 

Cracking 82 NA NA 80 

Offline-Module 70 NA NA 76 

Shadowing 77 NA NA 82 

Soiling  28 NA NA 38 

Vegetation 76 NA NA 76 

Average  72.67    
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(a)     (b) 

 
 

 (c) 

Figure 4, The confusion chart for the anomaly classification based on infrared images using a) 

SVM, b) KNN and c) RF classifiers in SWT domain 

3. CONCLUSION 

This work is applying various machine learning techniques for anomaly detection of the solar cell 

with anomaly type identification. The proposed method is based on the combination of independent 

transformation that is wavelet scattering transform with the ML classifiers to classify the infrared 

images into twelve classes. The twelve classes are, Diode, Diode-Multi, Cracking, Cell, Cell-Multi, 

Soiling, Offline-Module, Shadowing, Hot-Spot-Multi, Hot-Spot, Vegetation and No-Anomaly. 

Three classifiers are tested with the WST: SVM, KNN and RF. The proposed model WST+RF, 

outperforms all other methodologies. The performance enhancement of the proposed model is due 

to the ability of the WST to understand the dataset and extract features from it without being 

affected by the imaging condition variation. Unlike the work done in the literatures, the proposed 

model can differentiate between the different types of anomalies effectively. 
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