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Abstract 

The electric energy systems comprise the following three primary phases. These include generation, 

transmission and distribution. During the transmission of generated power, losses occur which is 

considered a major issue in any power system. To meet the continuous demand for electricity, 

power systems need to be efficient and economical while maintaining stability. The optimal reactive 

power dispatch (ORPD) problem is a complex and nonlinear optimization problem that involves 

control variables which are subject to both equality and inequality constraints. Solving the issue of 

the ORPD problem can help in achieving these goals. In this paper, the Leader Tasmanian Devil 

Optimization (LTDO) algorithm is proposed to address the ORPD problem and find the optimal 

solution. The objective functions of minimizing power loss and voltage deviation are implemented 

into the IEEE 30-bus and IEEE 57-bus tested power systems. The optimal control variables such as 

generator voltages, reactive power compensation and transformer tapings, are determined to 

achieve these goals. And so, comparisons are made between the outcomes of the suggested LTDO 

algorithm and other algorithms, such as the gradient-based optimizer (GBO), the equilibrium 

optimizer (EO) and the Tasmanian Devil Optimization (TDO) algorithm. Furthermore, the 

performance of the proposed LTDO algorithm is compared with the results of other well-known 

studied techniques in recent papers. The results show that the proposed LTDO algorithm 

outperforms the other algorithms in terms of accuracy, convergence rate and system stability. 

Therefore, the proposed LTDO algorithm deserves more attention as a potential solution for ORPD 

problems in the power system. 

Keywords: Optimal Reactive Power Dispatch; Tasmanian Devil optimization algorithm; active 

power losses; voltage deviation. 

1. Introduction 

Optimization is a process that involves finding the best possible solution for a given problem 

while taking the constraints that apply to it [1]. These optimization problems can be classified into 

three main types based on the optimization techniques employed. These include single-variable 

functions, multi-variable functions without constraints and multi-variable functions with 

constraints. The constraints can be categorized as either equality or inequality constraints. The 

optimal power flow problem in energy systems comprises two sub-problems, the optimal reactive 

power dispatch (ORPD) problem and the economic dispatch problem [2]. The ORPD problem is a 

complex and nonlinear optimization problem that involves control variables which are subjected to 

both equality and inequality constraints. The power system has three main objectives, minimizing 

active power losses, minimizing voltage deviations and minimizing the L-index. All of which can be 

achieved by solving the ORPD problem. 
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Solving the ORPD problem also provides values for control variables such as generator voltage 

ratings, transformer tap settings and shunt compensator outputs. These, in turn, can help the power 

system to operate more efficiently, stably and reliably [3, 4]. 

Although the ORPD is a critical aspect of power systems, various optimization techniques have 

been employed to tackle this problem. Classical optimization methods, such as interior point (IP) 

[5], gradient-based algorithm [6], Newton-based method [7], quadratic programming [8], 

Lagrangian approach [9] and linear and nonlinear programming [10, 11], were initially used to 

address ORPD. Regardless of the convergence characteristics of the classical optimization methods, 

these techniques may almost fail for obtaining the global solution due to difficulties of nonlinearity, 

and no convexity. However, these methods produced inaccurate results due to some limitations in 

solving the ORPD issue. Hence, novel optimization techniques, such as meta-heuristic algorithms 

(MA), have been developed and successfully applied to ORPD problems. 

Several methodologies have been employed to address the ORPD issue, each proving effective 

in achieving optimal solutions. MAs offer an efficient and effective means of optimizing reactive 

power distribution in power systems, leading to enhanced system performance and reduced 

operational costs. The metaheuristic optimizations algorithms are inspired based on animals’ 

behavior and physical phenomena have become widespread popular due to their flexibility, 

simplicity, and ability to get global solutions, and prevent local optimal solutions. 

 In a study referenced as [12], the authors utilized the Grey Wolf Optimizer (GWO) algorithm to 

address the ORPD problem and compared its performance against other well-known optimization 

algorithms like Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Differential 

Evolution (DE). Also, a hybrid GWO-PSO method is proposed with the aim of enhancing optimization 

performance by leveraging the strengths of both the GWO and PSO algorithms. PSO is known for its 

fast convergence rate, while GWO excels in effective exploration capabilities. By combining these 

two techniques, the suggested hybrid algorithm achieves a balanced approach in exploring and 

utilizing the search space. Simulation tests conducted on IEEE 30-bus and 57-bus. The results of the 

suggested approach exhibit improved convergence and solution quality this shown in [13]. A unique 

metaheuristic optimization approach has been introduced to address ORPD problems in power 

systems. This approach draws inspiration from nature, specifically the social structure and hunting 

behavior of grey wolves and is based on GWO. The robustness of the utilized approach is 

demonstrated through a variety of ORPD problems on two tested power systems [14].  

In [15], the specialized genetic algorithm (SGA) is examined and tested with the recommended 

constraint handling approach and the traditional penalization of deviations from feasible solutions. 

Several tests are run in the IEEE 30, 57, 118 and 300 bus test power systems. The results obtained 

with the proposed approach are compared to those offered by other metaheuristic techniques 

reported in the specialized literature Reference [16] shows that the PSO technique is utilized to 

determine the optimal values of reactive power sources in the system inspired by the social behavior 

of fish schools and flocks of birds. The suggested method is evaluated on widely used systems in 

power system optimization studies, namely the typical 30-bus and 57-bus test systems.  

In reference [17], the combination of fuzzy logic and PSO algorithms is proposed to enhance the 

performance of ORPD in bulk power systems. Fuzzy logic is utilized to dynamically adjust the 
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parameters of the PSO technique during optimization, leading to improved convergence speed and 

solution quality. The objective function includes the reduction of overall actual power loss in the 

power system, along with considering VD as a penalty term. The proposed approach is tested on a 

118-bus network to demonstrate its effectiveness in enhancing ORPD performance. But in [18], the 

proposed PSO algorithm with aging leaders and challengers is tested on three different electric 

networks: the standard 14-bus, 30-bus, and 57-bus systems. In [19], the suggested approach for 

handling constraints in the ORPD issue is based on the Penalty Function Method (PFM). The 

modified PFM approach is utilized to tackle the ORPD issue in the 30-bus and 118-bus power 

systems.  

In [20], the modified Social Spider Optimization (MSSO) algorithm is employed to solve the ORPD 

issue in electric networks with multiple objectives. The MSSO algorithm is an enhancement of the 

original SSO algorithm, which draws inspiration from the hunting behavior of social spiders. The 

accuracy of the developed MSSO approach is validated on the 33-bus and 69-bus systems with 

various objective functions including minimizing total power loss, reducing voltage variation, and a 

combination of both objectives. In reference [21], the tight-and-cheap conic relaxation (TCCR) 

strategy was used to solve the ORPD. By tightly relaxing the ORPD problem using the TCCR 

technique. The authors evaluate their proposed methodology on several systems, including the 14-

bus, 30-bus, and 118-bus typical networks. 

In [22], the suggested chaotic bat algorithm (CBA) incorporates a chaotic map to improve the 

algorithm’s search ability and prevent it from getting stacked in a local optimum. The suggested CBA 

method is evaluated on the 14-bus, 30-bus, and 118-bus systems. In reference [23], the authors 

propose an optimization method based on the moth-flame optimizer (MFO) to tackle ORPD issues 

in electric networks. The MFO algorithm imitates the behavior of moths and flames and utilizes the 

attraction mechanism between them to find the optimal solution. The efficacy of the proposed 

method is demonstrated on several ORPD challenges using a practical 135-bus system and a 

traditional 30-bus system. 

In [24], a novel methodology to solve the ORPD issue is proposed by utilizing an enhanced 

gravitational search algorithm (GSA) with two innovative constraint-handling strategies. The 

goodness of the incorporated method is validated on the IEEE 30-bus, 57-bus, and 118-bus standard 

networks. In reference [25], a hybrid of artificial rabbits’ optimization (ARO) and gradient-based 

optimization (GBO) (AROGBO) technique was applied to optimize the performance of the standard 

IEEE-30, IEEE-57, and IEEE-118 bus test systems. For each system, two objective functions were 

evaluated: minimizing total power loss and minimizing total VDs. 

In reference [26], a novel approach is proposed to address the ORPD issue in power systems by 

addressing load uncertainty. The methodology combines the DE technique and Monte Carlo 

simulation. The proposed methodology is extensively evaluated on both the standard 30-bus and 

enhanced 118-bus systems. In reference [27], the authors present a unique approach to solving the 

ORPD issue incorporating an improved ant-lion optimization algorithm (IAOA). The article also 

includes a comprehensive evaluation of the suggested algorithm’s performance on two different 

IEEE 30-bus systems and modified 118-bus networks. In reference [28], a novel optimization 

technique called the Gaussian bare-bones water cycle (GBWC) algorithm is proposed to address the 
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RPD problem in electrical networks. The algorithm’s performance is compared with several state-

of-the-art optimization techniques on the 30-bus and 118-bus standard networks.  

 In reference [29], the authors propose an improved Salp swarm algorithm (ISSA) that 

incorporates dynamic weight factors and a local search mechanism, along with additional features, 

to address both single-objective and multi-objective ORPD issues. The work considers benchmark 

issues in both single- and multi-objective ORPD on the 30-bus and 57-bus standard networks. In 

[30], the authors propose a novel optimization technique called quasi-oppositional differential 

evolution (QODE) to tackle the RPD issue in electric networks. This technique combines opposing 

and quasi-opposing solutions to generate new candidate solutions. Standard IEEE 30 bus and 118 

bus systems are incorporated for comparative analysis.  

For instance, GA [31] and the hybrid loop-genetic-based algorithm [32] are some of the MA 

approaches used to address ORPD. The DE algorithm [33] has been integrated with other systems 

such as the Ant system (DE-AS) [34], modified with other algorithms such as Modified teaching 

learning algorithm [35] chaotic turbulent flow of water-based optimization algorithm [36].  

In [37], a novel non-probabilistic structural damage identification approach by developing a 

hybrid swarm intelligence technique based on Jaya and Tree Seeds Algorithm (TSA), taking into 

account the high-level uncertainties in the measurements and finite element modeling. To make 

the optimization algorithm more powerful and robust, a hybridization of the K-means clustering 

based Jaya and TSA is proposed. Jaya algorithm is taken as the core in the hybridization. The 

proposed hybridization algorithm is termed as “C-Jaya-TSA”. To enhance the capacity of the 

proposed algorithm to consider uncertainties, a non-probabilistic method is also integrated to 

calculate the interval bound (lower and upper bounds) of the elemental stiffness changes by using 

the interval analysis method. 

In [38], the ORPD is solved using a new natural inspired algorithm called the marine predators’ 

algorithm considering the uncertainties of the load demand and the output powers of wind and 

solar generation systems. The scenario-based method is applied to handle the uncertainties of the 

system by generating deterministic scenarios from the probability density functions of the system 

parameters. The proposed algorithm is applied to solve the ORPD of the IEEE-30 bus system to 

minimize the power loss and the system voltage devotions. 

The Tasmanian Devil Optimization (TDO) algorithm has been found to be highly efficient and 

effective in solving real-world problems by striking a balance between exploration and exploitation. 

However, in this study, an effective version called the Leader Tasmanian Devil Optimization (LTDO) 

is presented to further enhance the accuracy of the solution to the ORPD problem. Our goal is to 

achieve a more stable grid and more accurate results. To achieve this, we applied three optimization 

methods (the gradient-based optimizer, equilibrium optimizer, and TDO algorithm) to two power 

systems (IEEE 30-bus and IEEE 57-bus) and tested two single objective functions (minimizing active 

power losses and minimizing voltage deviation). However, the results of these three algorithms did 

not meet our expectations, so we modified the TDO algorithm to create the LTDO algorithm. The 

LTDO algorithm was then used to solve the ORPD problem and compared to the results obtained by 

the other three techniques in both power systems. The simulation results showed that the LTDO 

algorithm outperformed the other three algorithms and led to a more stable and efficient power 

system. 
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The paper is structured as follows: Section 2 presents the mathematical equations for the ORPD 

problem. Section 3 describes the TDO optimization and the LTDO algorithm. Section 4 provides a 

detailed analysis of the results and a discussion of the findings. Finally, Section 5 presents the 

conclusions, the propositions, and the outcomes of the study. 

2. Problem formulation 

The power system network comprises various components, including generators (which produce 

electrical power and have parameters such as terminal voltage, output active power, and reactive 

power), transformers (which regulate voltage levels by increasing or decreasing voltage rate and 

adjusting tap changers), transmission lines (which transmit electricity from generators to loads), 

loads, and capacitors. When these components are controlled, the power system network operates 

stably and with high efficiency. The ORPD problem involves modeling objective functions and 

limitations, such as those pertaining to equality and inequality. There are three objective functions 

for the ORPD problem. The first objective is to minimize power losses (PLoss), which is the primary 

objective. The second objective is to minimize voltage deviation (VD), and the third objective is to 

minimize the voltage stability index (L-index). 

2.1. Objective Functions: 

The main goals of the present study's ORPD problem are twofold: first, to minimize the active 

power loss (PLoss), and second, to minimize the voltage deviation (VD) within the system being 

analyzed. 

(1) Real Power Loss minimization (PLoss)  

Minimizing active power loss (PLoss) is a crucial objective function in power systems as it directly 

results in energy loss and increased energy prices. Mathematically, this function can be expressed 

as: 

𝑓1 = 𝑚𝑖𝑛(𝑃𝑙𝑜𝑠𝑠) = 𝑚𝑖𝑛 [ ∑ 𝑔𝑘( 𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗  𝑐𝑜𝑠 𝛼𝑖𝑗)

𝑁𝑇𝐿

𝑘=1

]   (1) 

Where; Ploss is the active power loss, Vi  signifies the voltage amplitude of the ith bus, Vj  signifies 

the voltage amplitude of the ith bus, NTL signifies the number of transmission lines, αij is phase angle 

between voltages of ith and the jth bus, and gk is the conductance of the kth section. 

(2) Voltage deviation minimization of (VD) 

The second objective function in ORPD is the minimization of voltage deviation. Mathematically, 

this can be expressed as: 

𝑓2 = 𝑉𝐷 = 𝑚𝑖𝑛 (∑|𝑉𝑙𝑖 − 1|

𝑁𝐿

𝑖=1

) (2) 

where VD signifies the voltage deviation, Vli signifies the voltage at the ith bus and NL signifies the 

number of load buses [38]. 
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2.2. Constraints 

(1) Equality Constraint 

𝑃𝑖 − 𝑉𝑖 ∑ 𝑉𝑗

𝑁𝐵

𝑗=1

[𝐺𝑖𝑗 𝑐𝑜𝑠(𝜃𝑖−𝜃𝑗) + 𝐵𝑖𝑗 𝑠𝑖𝑛(𝜃𝑖−𝜃𝑗)] = 0 (3) 

Where;   Pi  = (PGi − PDi) (4) 

𝑄𝑖 − 𝑉𝑖 ∑ 𝑉𝑗

𝑁𝐵

𝑗=1
[𝐺𝑖𝑗 𝑠𝑖𝑛(𝜃𝑖−𝜃𝑗) − 𝐵𝑖𝑗 𝑐𝑜𝑠(𝜃𝑖−𝜃𝑗)] = 0     (5) 

Where;     Qi = (𝑄𝐺𝑖 − 𝑄𝐷𝑖)                                                                                            (6) 

where 𝑃𝑖  is the active power injected at ith bus, 𝑄𝑖 is the reactive power injected at ith bus, 𝑃𝐺𝑖  

is the active power generated at the bus i, 𝑄𝐺𝑖 is the reactive power generation of the ith bus, 𝑃𝐷𝑖 is 

the active load demand of the ith bus, 𝑄𝐷𝑖 is the reactive power drawn from the ith bus, 𝐵𝑖𝑗 and 𝐺𝑖𝑗 

signify the components of the bus admittance matrix, and 𝑁𝐵 signifies the buses number.  

(2) Inequality Constraints 

• Generator Constraints 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥         For i = 1, ………, 𝑁𝐺  (7) 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥        𝐹𝑜𝑟 𝑖 =  1, … … … , 𝑁𝐺     (8) 

• Transformer Constraints 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥           For i = 1, ………, 𝑁𝑇 (9) 

• Shunt VAR compensator Constraints 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥       For i = 1, ………, 𝑁𝐶  (10) 

•  Transmission line and load Constraints 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥        For i = 1,………, 𝑁𝐿 (11) 

𝑆𝐿𝑖 ≤ 𝑆𝐿𝑖
𝑚𝑎𝑥                         𝐹𝑜𝑟 𝑖 =  1, … … … , 𝑁𝐿     (12) 

where: VGi
max is the maximum generator voltage of the ith bus VGi

min is the minimum generator 

voltage of the ith bus, QCi
max is the minimum values of the reactive power injection of the ith shunt 

compensator, QCi
min is the minimum values of the reactive power supplied by shunt compensator at 

the ith bus, Ti
max is the maximum tap adjusting values of the ith transformer, Ti

min is the minimum 

tap adjusting values of the ith transformer, NC is the number of shunt compensators, NG is the 

number of generators, NT signifies the number of tap changers, VLi
min signifies the minimum voltages 

of the ith load bus, VLi
max signifies the maximum voltage of the ith load bus, QGi

min signifies the 

minimum reactive power generation values of the ith generator bus, QGi
max signifies the maximum 

reactive power generation values of the ith generator, and SLi
max signifies the maximum apparent 

power flow through line i  [39]. 
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3. Methodology 

3.1 Optimization (TDO) 

The TDO algorithm [1] is a metaheuristic method inspired by the natural foraging behavior of the 

Tasmanian devil. It simulates two main activities: attacking live prey and scavenging dead animals. 

The algorithm is structured around the Tasmanian devil’s nutritional process, with a flowchart 

provided in Figure 1 illustrating the key steps of the methodology. In nature, the Tasmanian devil 

seeks food sources through a combination of active hunting and opportunistic feeding, whereas in 

the TDO algorithm, this behavior is translated into a structured search for the optimal solution to a 

given optimization problem. 

The optimization process is divided into two main phases: exploration and exploitation 

mathematically represented by equations (13) to (21). In the context of the algorithm, exploration 

refers to the broad search across the solution space, analogous to the animal’s search for food 

across various areas. Exploitation, on the other hand, represents the focused search within a 

confined region, similar to the devil’s pursuit of prey in a specific area, and corresponds to the local 

refinement of potential solutions. The mathematical modeling of this nutritional behavior closely 

mirrors the design strategy employed to solve complex optimization problems [1]. 

𝐶𝑖 = 𝑋𝑘     i=1,2…N    , k €{1,2,…….N|k ≠ i},                    (13) 

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑠1 = {

𝑥𝑖,𝑗 + 𝑟. (𝐶𝑖,𝑗 − 𝐼. 𝑥𝑖,𝑗), 𝐹𝐶𝑖 <  𝐹𝑖;

𝑥𝑖,𝑗 + 𝑟. (𝑥𝑖,𝑗 − 𝐶𝑖,𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
                          (14) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑠1,     𝐹𝑖
𝑛𝑒𝑤,𝑠1 <  𝐹𝑖;

𝑋𝑖,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
                                                  (15) 

𝑃𝑖 = 𝑋𝑘     i=1,2, …..…N    , k €{1,2,…….N|k ≠ i},                       (16) 

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑠2 = {

𝑥𝑖,𝑗 + 𝑟. (𝑃𝑖,𝑗 − 𝐼. 𝑥𝑖,𝑗), 𝐹𝑃𝑖 <  𝐹𝑖;

𝑥𝑖,𝑗 + 𝑟. (𝑥𝑖,𝑗 − 𝑃𝑖,𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
                          (17) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑠2,     𝐹𝑖
𝑛𝑒𝑤,𝑠2 <  𝐹𝑖 ;

𝑋𝑖,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
                                                 (18) 

R=0.01(1-  
𝑡

𝑇
),                                                                                  (19) 

𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑥𝑖,𝑗 + (2𝑟 − 1). 𝑅. 𝑥𝑖,𝑗  ,                                                  (20) 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤 ,     𝐹𝑖
𝑛𝑒𝑤 <  𝐹𝑖 ;

𝑋𝑖,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                                                          (21) 

where;   X implies the size of population, 𝑋𝑖 implies the ith solution, 𝑥𝑖,𝑗 implies the value of jth 

variable for the ith solution , N implies the number of search agents, Ci implies the chosen carrion 

by ith  devil, 𝑋𝑖
𝑛𝑒𝑤,𝑠1 implies the updated position of the ith devil according to the first 

strategy, 𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑠1 implies its value for the jth variable,     𝐹𝑖

𝑛𝑒𝑤,𝑠1 implies its fitness, 𝐹𝐶𝑖 implies the 

fitness of chosen carrion, r implies an arbitrary number between[0; 1], and I implies a randomly 

produced number with a value of 1 or 2,  𝑃𝑖  implies the defined prey by the ith devil, k implies a 

random number ranged from 1 to N and opposite i,  𝑋𝑖
𝑛𝑒𝑤,𝑠2implies the modified status of ith Devil 
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according to the second strategy,; 𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑠2implies the value for the jth variable,    𝐹𝑖

𝑛𝑒𝑤,𝑠2 implies its 

fitness, and 𝐹𝑃𝑖 implies the fitness objective of defined prey, R implies the radius of the position of 

attack, t implies the current iteration, T implies the maximum  iterations, 𝑥𝑖
𝑛𝑒𝑤implies the updated 

status of the ith devil in neighborhood of 𝑋𝑖 ,  𝑥𝑖,𝑗
𝑛𝑒𝑤implies its value for the jth variable, and     𝐹𝑖

𝑛𝑒𝑤i 

implies its fitness value. 

Start

Define parameters, population (N) , and MaxIter (T)

Initialize population

Calculate the fitness values 

Pr= Rand

N=1?

T =T?

Output best solution

Pr>0.5

Select Pi using (16)

Calculate Xnew,s2 using (17)

modify Xj using (18)

modify R using (19)

modify Xnew,i,j using (20)

modify Xi using (21)

Select Ci using (13)

Select Xnew,s1 using (14)

Select xi using (15)

Save optimal solution

i = i +1 t = t +1

 
Fig. 1 Flowchart of the TDO technique 

3.2 LTDO algorithm 

Leader-based mutation selection is the term for the development [43]. This method was put up 

to address the potential for the ideal value to fall to a local minimum. This alteration is contingent 

upon the optimal location vector, 𝑥𝑏𝑒𝑠𝑡
𝑡 , based on the fitness value of the new location vector 

𝑥𝑖(𝑛𝑒𝑤) between the number of population. The second-best position vector 𝑥𝑏𝑒𝑠𝑡−1
𝑡  and the third-

best position vector 𝑥𝑏𝑒𝑠𝑡−2
𝑡  were determined. Next, the following gives the new mutation position 

vector 𝑥𝑖(𝑚𝑢𝑡): 
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𝑥𝑖(𝑚𝑢𝑡) = 𝑥𝑖(𝑛𝑒𝑤)

+ 2 × (1 −
𝑡

Max _𝑖𝑡
)

× (2 × 𝑟𝑎𝑛𝑑 − 1)(2 × 𝑥𝑏𝑒𝑠𝑡
𝑡 − (𝑥𝑏𝑒𝑠𝑡−1

𝑡 + 𝑥𝑏𝑒𝑠𝑡−2
𝑡 ))

+ (2 × 𝑟𝑎𝑛𝑑 − 1)(𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖(𝑛𝑒𝑤))  

(22) 

Then, the next location is modified as: 

𝑥𝑖(𝑡 + 1) = {
𝑥𝑖(𝑚𝑢𝑡)    𝑓(𝑥𝑖(𝑚𝑢𝑡)) < 𝑓(𝑥𝑖(𝑛𝑒𝑤))

𝑥𝑖(𝑛𝑒𝑤)    𝑓(𝑥𝑖(𝑚𝑢𝑡)) ≥ 𝑓(𝑥𝑖(𝑛𝑒𝑤))
 (23) 

Finally, the best solution is updated as follows: 

𝑥𝑏𝑒𝑠𝑡 = {
𝑥𝑖(𝑚𝑢𝑡)    𝑓(𝑥𝑖(𝑚𝑢𝑡)) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

𝑥𝑖(𝑛𝑒𝑤)    𝑓(𝑥𝑖(𝑛𝑒𝑤)) < 𝑓(𝑥𝑏𝑒𝑠𝑡)
 (24) 

As seen in Figure 2, the flowchart of the LTDO technique includes the position of the proposed 

algorithm for Leader-based mutation selection. By employing the top three leaders for simultaneous 

crossover and mutation, this modification improves the evaluation of the modified LTDO approach. 

Start

Define parameters, population (N) , and MaxIter (T)

Initialize population

Calculate the fitness values 

Pr= Rand

N=1?

T =T?

Output best solution

t = t +1

Pr>0.5

Select Pi using (16)

Calculate Xnew,s2 using (17)

modify Xj using (18)

modify R using (19)

modify Xnew,i,j using (20)

modify Xi using (21)

Select Ci using (13)

Select Xnew,s1 using (14)

Select xi using (15)

Modify positions using (22)

i = i +1

Evaluate fitness value using (23)

Update best solution using (24)

Leader-based 

mutation selection

 

Fig. 2. Flowchart of the LTDO methodology 
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4. Results and Discussion 

 The study utilized four proposed algorithms, namely GBO, EO, TDO, and LTDO, to address the 

ORPD problem with two objective functions: minimizing active power losses (Ploss) and minimizing 

voltage deviation (VD). These algorithms were implemented on two power systems, namely IEEE 

30-bus and IEEE 57-bus, as outlined in Table 1. Figure 3 shows the IEEE 30 bus system.  
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Figure 3. IEEE 30-bus system. 

 

Table 1. Power systems specification. 

Description IEEE 30-bus IEEE 57-bus 

No. Of buses 30 57 

No. Of generators 6 7 

No. Of transformers 4 17 

No. Of shunt compensators 9 3 

No. Of branches 41 80 

Equality constraints 60 114 

Inequality constraints 125 245 

Independent variables 19 27 

Dependent variables 6 20 

Base case for Ploss, MW 5.660 27.8637 

Base case for TVD, p.u. 0.58217 1.23358 

https://journals.aswu.edu.eg/stjournal


(ASWJST/ Volume 05, Issue 03/ September 2025 P a g e  | 126 

 

(ASWJST 2021/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095) https://journals.aswu.edu.eg/stjournal 

 

The MATLAB 2018 software program was used to implement the proposed algorithms on a 

computer with a 2.67 GHz core i5 processor and 4 GB RAM. The search agents were set to 50 and 

the maximum number of iterations was set to 500. In Case 1, where the objective was to minimize 

power losses (Ploss) in the IEEE 30-bus power system, the results presented in Table 2 demonstrate 

that the LTDO approach outperforms the other algorithms. The optimal control variable values 

that produced by our proposed algorithms are shown in Table 3. 

Table 2. Control variables for IEEE 30-bus system case1 (Ploss). 

Parameters Min Max 
                           Proposed algorithms 

GBO EO TDO LTDO 

Generator voltage (p.u.)      
V1 0.950 1.10 1.071032 1.071472 1.071237 1.071503 
V2  0.950 1.10 1.061796 1.062185 1.062115 1.062354 
V5  0.950 1.10 1.039846 1.039844 1.040064 1.040063 
V8  0.950 1.10 1.039876 1.039817 1.040189 1.040193 
V11  0.950 1.10 1.032475 1.036577 1.034406 1.036092 
V13  0.950 1.10 1.062488 1.06159 1.061039 1.061222 
Transformer tap ratio (p.u.)     
T11 0.90 1.10 1.01535 0.996542 1.015453 0.991399 
T12 0.90 1.10 0.900161 0.926149 0.903146 0.932545 
T15  0.90 1.10 0.984448 0.982578 0.981788 0.981728 
T36  0.90 1.10 0.986786 0.986534 0.987736 0.987146 

Capacitor bank (MVAr)      

QC10  0 5 0.521123 0.81860 0.487658 0.659298 
QC12  0 5 0.260124 0 0.276267 0.118679 
QC15  0 5 4.99989 4.9996 1.851999 2.465258 
QC17  0 5 0.080239 0.000254 2.207969 0.750271 
QC20 0 5 1.739245 0.327968 3.187559 3.482495 
QC21  0 5 0.509966 4.687609 4.081412 4.965565 
QC23 0 5 4.03902 2.5062 1.741715 2.518776 
QC24  0 5 1.747189 4.962173 3.371643 1.345308 
QC29  0 5 4.823309 3.6870039 1.341146 0.490049 
Objective function      
Ploss (MW) NA NA 4.945 4.944876 4.944895 4.944845 
Reactive power generation (MVAr)     
QG1    -29.80 59.6 -3.06773 -2.7178 -2.95516 -3.15886 
QG2    -24 48 10.63886 11.25537 11.63162 11.12889 
QG5   -30 60 1.953514 1.73356 1.808755 1.840262 
QG8    -26.50 53 26.73682 26.5341 27.31009 26.74908 
QG11  -7.50 15 -4.32984 -5.284388 -6.10067 -3.60406 
QG13  -7.80 15.5 9.728283 9.03965 8.757492 8.619919 

 

Table 3. Results of Ploss for IEEE 30-bus system. 

Algorithm TDO LTDO EO GBO 

Best 4.944895 4.944845 4.944875 4.945 

Mean 4.945092 4.945399 4.945544 4.949695 

Median 4.945068 4.945274 4.945375 4.94635 

Worst 4.945444 4.947507 4.94658 4.9755 

Std. Deviation 0.000137 0.000587 0.000519 0.007978 
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Figure 4 displays the comparison of minimum active power loss achieved by the LTDO algorithm 

and other algorithms. Figure 5 shows the reactive power of generators for all algorithms. 

Additionally, Figure 6 illustrates the voltage magnitudes for the 30 buses in the system for the 

proposed algorithms. The results indicate that the voltage profile achieved by the LTDO algorithm 

outperforms the other ones for most of the buses. In case 2, where the objective of minimizing (VD) 

in the IEEE 30-bus power system, Table 5 shows that the LTDO algorithm outperforms the other 

algorithms and achieves optimal values. Table 4 presents the optimal variables obtained by the four 

proposed algorithms. 

 
Figure 4. Boxplots based on suggested techniques for case 1. 

 
Figure 5. Representation of reactive power generation for case 1 

 
Figure 6. Voltage profiles for case-1. 
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Table 4. Optimized variables for IEEE 30-bus system case2 (VD). 

Parameters Min Max 
 Proposed algorithms 

GBO EO TDO LTDO 

Generator voltage (p.u.)      
V1  0.950 1.10 1.004141 1.004997 1.004435 1.00256 
V2  0.950 1.10 1.004527 1.00445 1.004764 1.002462 
V5  0.950 1.10 1.016646 1.017078 1.016912 1.017389 
V8  0.950 1.10 1.005271 1.004935 1.005956 1.0056 
V11  0.950 1.10 1.007753 1.003181 0.997502 0.998077 
V13  0.950 1.10 1.027531 1.026852 1.02757 1.033196 
Transformer tap ratio (p.u.)      
T11  0.90 1.10 1.039456 1.037017 1.028871 1.027832 
T12  0.90 1.10 0.900001 0.900177 0.90497 0.900706 
T15  0.90 1.10 0.975975 0.975119 0.975768 0.986791 
T36  0.90 1.10 0.970034 0.968731 0.969534 0.970827 
Capacitor bank (MVAr)      
QC10  0 5 1.027896 4.087516 2.886778 0.002281 
QC12  0 5 2.500364 0.964742 1.869531 3.73286 
QC15  0 5 0.000249 0.000256 2.491492 4.043346 
QC17  0 5 1.68685 4.911974 1.78158 3.958112 
QC20  0 5 1.376082 1.643454 0.860772 2.56869 
QC21  0 5 4.776548 4.993874 2.488306 0.009062 
QC23  0 5 1.097063 0.04512 3.170594 4.994962 
QC24  0 5 4.074833 1.963021 3.072747 2.574953 
QC29  0 5 3.257629 1.885478 1.787733 1.197623 
Objective function      
VD (p.u.) NA NA 0.122024 0.122428 0.121902 0.121539 
 Reactive power generation (MVAr)     
QG1   -29.8 59.6 -29.8 -27.7386 -29.8 -29.5594 
QG2    -24 48 -4.69091 -6.40245 -9.08833 -4.42821 
QG5    -30 60 29.72286 30.35612 31.83225 29.94824 
QG8    -26.5 53 40.73791 40.69673 43.04114 43.11959 
QG11  -7.5 15 4.169385 1.949049 -0.50575 -0.77929 
QG13  -7.8 15.5 11.02679 10.50824 15.34093 11.02194 

 

Table 5. Results of VD for IEEE 30-bus test system. 

Algorithm TDO LTDO EO GBO 

Best 0.121902 0.121539 0.122428 0.12202 
Mean 0.122639 0.122974 0.125179 0.123806 
Median 0.122643 0.122985 0.124771 0.12379 
Worst 0.123936 0.126764 0.128889 0.12655 
Std. Deviation 0.000496 0.001286 0.001593 0.001046 

 

Figure 7 displays the VD values of four algorithms studied for the 30-bus power system with a 

focus on minimizing VD. The LTDO technique demonstrates the best results. Figure 8 showcases the 

reactive power generation for other algorithms in case two. Figure 9 depicts the voltage profiles of 

the suggested techniques for the system of 30 buses. As demonstrated in the figure, the LTDO 

algorithm yields superior voltage profiles in most of the buses compared to the other algorithms. 
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Figure 7. Boxplots based on suggested techniques for case-2. 

 
Figure 8. Representation of reactive power generation for case 2 

 
Figure 9. Voltage profiles for case-2. 
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In the case of the 57-bus power system, where the objective is to minimize Ploss in case 3, Table 

6 lists the best control variable values. Table 7 demonstrates that the LTDO algorithm outperforms 

the other algorithms with regards to Ploss values. 

Table 6. Control variables for IEEE 57-bus system case3 (Ploss). 

Parameters Min Max 
Proposed algorithms 

GBO EO TDO LTDO 

Generator voltage (p.u.)      

V1 0.950 1.10 1.083097 1.088584 1.087669 1.08898 

V2  0.950 1.10 1.072353 1.076589 1.075745 1.077138 

V3 0.950 1.10 1.060881 1.061101 1.061423 1.062021 

V6  0.950 1.10 1.054203 1.05593 1.04835 1.056823 

V8  0.950 1.10 1.07583 1.074526 1.065384 1.071978 

V9  0.950 1.10 1.046384 1.040742 1.037151 1.040515 

V12  0.950 1.10 1.053073 1.043244 1.04478 1.04292 

Transformer tap ratio (p.u.)     

T19  0 20 7.408436 13.69412 11.05833 10.81369 

T20  0 20 10.68707 15.49922 11.55412 12.0325 

T31  0 20 10.5197 13.62317 8.686563 11.05219 

T35  0 20 8.079208 4.99742 15.03267 13.40578 

T36  0 20 12.87629 15.18321 9.786959 7.360444 

T37  0 20 9.812319 10.01611 11.23614 9.622633 

T41  0 20 9.720015 9.173277 8.957711 9.675116 

T46  0 20 4.356667 3.498912 6.247816 5.674863 

T54  0 20 8.26881 0.000382 6.170274 12.20003 

T58  0 20 8.255977 8.13231 8.628839 8.399063 

T59  0 20 9.558948 8.03943 6.54122 7.049477 

T65  0 20 10.26309 8.982809 7.636221 8.028192 

T66  0 20 5.390395 4.778383 4.625574 6.249851 

T71  0 20 6.989455 9.197826 5.953773 5.390506 

T73  0 20 10.40507 1.179605 8.025692 12.69001 

T76  0 20 6.67063 5.89709 10.63217 8.806221 

T80 0 20 9.155039 7.510371 7.890874 7.832143 

Capacitor bank (MVAr)      

QC18  1 30 8.353978 12.17391 15.98982 14.23534 

QC25  1 30 14.66842 14.4781 15.25914 15.46344 

QC53  1 30 15.49276 1.745298 15.06278 14.32887 

Objective function      

Ploss (MW) NA NA 23.4998 23.6899 23.45493 23.43204 

Generator reactive power (MVAr)     

QG1  -140 200 40.53132 64.86378 64.13694 60.95872 

QG2  -17 50 49.99514 49.89506 49.9957 48.77168 

QG3  -10 60 42.07875 35.96238 34.42213 39.26771 

QG6  -8 25 -2.94065 4.164811 3.761811 -5.65749 

QG8  -140 200 66.07949 76.3103 61.68105 57.50029 

QG9  -3 9 8.999614 8.943546 8.999967 8.205503 

QG12 -150 155 65.40404 43.69682 41.51389 52.5489 
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Table 7.  Results of Ploss for IEEE 57-bus system. 

Algorithm TDO LTDO EO GBO 

Best 23.45493 23.40324 23.68991 23.4998 

Mean 24.6249 23.88991 25.36801 23.63577 

Median 24.45437 23.66876 25.03884 23.61985 

Worst 25.87214 25.29229 27.12346 23.8371 

Std. Deviation 0.715096 0.546281 1.055694 0.102224 

 

For the 57-bus power system, where the objective is to minimize Ploss, Figure 10 indicates that 

the LTDO algorithm yields the lowest power losses compared to the other techniques. Figure 11 

illustrates the reactive power generation in the power system, while Figure 12 displays the voltage 

profile achieved using the LTDO methodology, which outperforms the other studied techniques in 

most buses.  

 
Figure 10. Boxplots based on suggested techniques for case-3. 

 
Figure 11. Representation of reactive power generation for case-3. 
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Figure 12. Voltage profiles for case-3. 

 

Table 8 presents the optimal control variables for the IEEE 57-bus power system in case 4 with a 

focus on minimizing VD. The results obtained from the four proposed algorithms demonstrate that 

the LTDO methodology yields better values compared to the other algorithms under study. Also, 

Table 9 presents the statistical results of the proposed LTDO and other optimization algorithms to 

show the supremacy of the LTDO to solve the ORPD. 

Figure 13 demonstrated that the LTDO algorithm provided the most optimal values for voltage 

deviation in the 57-bus power system. Figure 14 displayed the reactive power generation results for 

all algorithms examined; Figure 15 showcased the voltage profiles resulting from the suggested 

techniques. The results revealed that the LTDO algorithm outperformed the others for most buses 

in terms of voltage profile. 

The proposed LTDO algorithm demonstrates superior convergence in power loss for case 1, as 

shown in Figure 16, achieving faster and more stable reduction compared to other techniques. In 

Figure 17, the algorithm exhibits enhanced convergence in voltage deviation for case 2, quickly 

reaching optimal values with minimal fluctuations. For case 3, Figure 18 highlights the LTDO 

algorithm's improved Ploss convergence, outperforming other methods by converging to a lower 

loss value more efficiently. Similarly, Figure 19 illustrates the algorithm's robust VD convergence for 

case 4, showcasing rapid stabilization and better performance than alternative approaches. Across 

all cases, the proposed LTDO technique consistently achieves faster and more reliable convergence, 

underscoring its effectiveness in optimizing power systems. 

When compared with other recently developed techniques, Table 10 revealed that the proposed 

LTDO algorithm for the 30-bus system yielded the best results in minimizing power loss. 

In the case of 30-bus system under minimizing VD, the best result has been given by using our 

proposed LTDO algorithm comparing with other recently techniques as provided in Table 11.  
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Table 8. Optimized control variables for case4 (VD). 

Parameters Min Max 
Proposed algorithms 

GBO EO TDO LTDO 

Generator voltage (p.u.)      
V1  0.950 1.10 1.027151 1.013827 1.012717 1.019484 
V2  0.950 1.10 1.016181 1.006551 1.00051 1.010841 
V3  0.950 1.10 1.008498 1.009924 1.004001 1.009065 
V6  0.950 1.10 1.003667 1.003425 0.995148 0.997159 
V8  0.950 1.10 1.017704 1.023622 1.013968 1.017021 
V9  0.950 1.10 0.998712 0.99855 0.994042 0.999751 
V12  0.950 1.10 1.029294 1.018975 1.024702 1.032351 
Transformer tap ratio (p.u.)      
T19  0 20 4.345691 19.80841 13.55167 7.148445 
T20  0 20 13.30462 8.455433 10.09213 9.116505 
T31  0 20 7.110257 7.227283 7.62836 8.369965 
T35  0 20 12.17408 17.31383 10.22388 19.2655 
T36  0 20 17.53505 19.99667 6.641036 13.05668 
T37  0 20 10.83356 11.21114 11.04366 10.09138 
T41  0 20 9.627105 11.1787 7.770522 9.715669 
T46  0 20 4.097224 3.985416 3.260128 1.327637 
T54  0 20 0.000183 0.00E+00 0.079764 1.01E-07 
T58  0 20 2.983137 4.735199 2.318335 3.036027 
T59  0 20 8.943067 6.472745 5.638287 7.350853 
T65  0 20 10.09535 8.268309 9.332491 10.91834 
T66 0 20 2.11E-06 0.419808 2.20E-02 0.32826 
T71  0 20 6.490749 5.29712 5.795564 5.189964 
T73  0 20 9.159237 10.0823 4.407124 9.961215 
T76  0 20 4.71E-05 0 3.73E+00 0.212674 
T80  0 20 8.345625 9.074298 9.124832 10.12272 
Capacitor bank (MVAr)      
QC18  1 30 4.726816 19.07913 17.42691 10.49876 
QC25  1 30 23.11284 26.64133 12.91723 19.42871 
QC53  1 30 22.68993 27.89456 22.48519 27.86925 
Objective function      
VD (p.u.) NA NA 0.603829 0.596804 0.640101 0.588375 
Generator reactive power (MVAr)     
QG1  -140 200 12.58937 -13.2065 -9.60722 3.828022 
QG2  -17 50 47.99061 49.2699 49.97487 31.72919 
QG3  -10 60 43.98599 58.89933 58.29397 59.43659 
QG6  -8 25 6.681949 -7.98727 -7.99008 -2.76365 
QG8  -140 200 28.10331 44.74489 30.28082 39.46266 
QG9  -3 9 8.692275 8.979909 8.989678 7.485923 
QG12  -150 155 140.3891 127.2061 154.8105 151.1331 

 

Table 9.  Results of VD for IEEE 57-bus system. 

Algorithm TDO LTDO EO GBO 

Best 0.640101 0.588375 0.596804 0.60383 

Mean 0.67912 0.638635 0.775162 0.639779 

Median 0.671508 0.63068 0.718362 0.63507 

Worst 0.786036 0.755152 1.067937 0.72276 

Std. Deviation 0.041412 0.038656 0.141168 0.02655 
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Figure 13. Boxplots based on suggested techniques for case-4. 

 
Figure 14. Representation of reactive power generation for case-4. 

 
Figure 15. Voltage profiles for case 4. 
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Figure 16. Power loss (Ploss) convergence trends for suggested techniques for case-1. 

 
Figure 17. Voltage deviation (VD) convergence trends for suggested techniques for case-2. 

 
Figure 18. Power loss (Ploss) convergence trends for suggested technique for case-3. 
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Figure 19. Voltage deviation (VD) convergence trends for suggested techniques for case-4. 

 

Table 10.  Comparison results of 30-bus power system for power loss. 

Technique Best Mean 

ECHT–DE [40] 4.947 4.9499 
SP–DE [40] 4.947 4.9667 
EC–DE [40] 4.946 4.9467 
SR–DE [40] 4.946 4.9481 
SF–DE [40] 4.946 4.9470 
ICA-PSO [41] 5.1861 - 
QODE [30] 5.2953 - 
OGSA [24] 5.1676 - 
PSOGWO [13] 5.09037 - 
GA [31] 5.0977 - 
TFWO [36] 4.9449 4.945205 
AEO [36] 4.9449 4.945715 
EO 4.944875 4.9455445 
GBO 4.945 4.949695 
TDO 4.94490 4.94509 
LTDO 4.94485 4.9454 

 

Table 11. Comparison results of VD for the 30-bus system 

Technique Best Mean 

ECHT–DE [40] 0.1229 0.1239 
EC–DE [40] 0.12171 0.12352 
SP–DE [40] 0.12240 0.12381 
SR–DE [40] 0.1230 0.1241 
SF–DE [40] 0.1231 0.1243 
PSO [13] 0.2816 NA 
PSOGWO [13] 0.27800 - 
AEO [36] 0.12308 0.124646 
TFWO [36] 0.12206 0.123365 
EO 0.122427 0.12517885 
GBO 0.122019 0.1238055 
TDO 0.121902 0.122639 
LTDO 0.121539 0.122974 
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From Table 12, it observed that the proposed LTDO algorithm produced the best result in the 57-

bus power system under minimizing Ploss comparing with recent techniques. 

Table 12.  Comparison results of Ploss for the 57-bus system 

Technique Min Mean 

KHA [42] 23.41 NA 

AEO [36] 23.4554 23.683825 

GBO 23.4998 23.63577 

EO 23.68991 25.368013 

TDO 23.4549 24.6249 

LTDO 23.4032 23.8899 

 

Table 13 presents a comparison of algorithms for minimizing VD in the 57-bus power system, and 

the results indicate that our proposed LTDO algorithm performs better than other developed 

algorithms. 

Table 13. Comparison results of VD for the 57-bus system 

Technique Min Mean 

SF–DE [40] 0.586 0.6077 

SP–DE [40] 0.5891 0.60852 

EC–DE [40] 0.590 0.61731 

SR–DE [40] 0.590 0.6069 

KHA [42] 0.6605 - 

CKHA [42] 0.6484 NA 

EO 0.596804 0.7751617 

GBO 0.60383 0.639779 

TDO 0.640101 0.67912 

LTDO 0.588375 0.638635 

5. Conclusion 

In this paper, four different optimization techniques algorithms were applied, namely: the 

equilibrium optimizer (EO), the gradient-based optimizer (GBO), TDO algorithm, and the proposed 

algorithm, LTDO algorithm. These algorithms were tested to solve the ORPD problem in two 

standard power systems, a 30-bus system and a 57-bus system, with two objective functions: first, 

minimizing power loss and second, minimizing voltage deviation. The results of the simulations 

showed that the values of power loss were 4.944875 MW in the EO algorithm, 4.945 MW in the 

GBO algorithm, and 4.9449 MW in the TDO algorithm. However, after using the LTDO algorithm, the 

best value was achieved at 4.94485 MW. Similarly, the values of voltage deviation were 0.12202 

p.u. in the GBO algorithm, 0.122428 p.u. in the EO algorithm, and 0.121902 p.u. in the TDO 

algorithm. After using the LTDO algorithm, the best value achieved was 0.121539 p.u. 

In the case of the 57-bus system, the power loss values were 23.4998 MW in the GBO algorithm 

and 23.68991 MW in the EO algorithm. The power loss value in the TDO algorithm was 23.4549 MW, 

and by using the LTDO algorithm, the power loss value was improved to 23.4032 MW. Lastly, the 

voltage deviation values were 0.60383 p.u. in the GBO algorithm, 0.596804 p.u. in the EO algorithm, 

https://journals.aswu.edu.eg/stjournal


(ASWJST/ Volume 05, Issue 03/ September 2025 P a g e  | 138 

 

(ASWJST 2021/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095) https://journals.aswu.edu.eg/stjournal 

 

and 0.640101 p.u. in the TDO algorithm. However, after using the LTDO algorithm, the voltage 

deviation value was improved to 0.588375 p.u. From these simulation results, it can be concluded 

that the proposed LTDO algorithm produced the most satisfactory results compared to the other 

proposed algorithms. Not only that, but these results were also superior to the recently developed 

algorithms. In the future, these results are encouraging as they suggest that the proposed system 

can address multi-objective ORPD problems for large-scale energy systems. 
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